I have a SparkR DataFrame
as shown below. I want to create a monthdiff
column that is the months between dates
, grouped by each name
. How can I do this?
#Set up data frame
team <- data.frame(name = c("Thomas", "Thomas", "Thomas", "Thomas", "Bill", "Bill", "Bill"),
dates = c('2017-01-05', '2017-02-23', '2017-03-16', '2017-04-08', '2017-06-08','2017-07-24','2017-09-05'))
#Create Spark DataFrame
team <- createDataFrame(team)
#Convert dates to date type
team <- withColumn(team, 'dates', cast(team$dates, 'date'))
Here's what I've tried so far, all resulting in errors:
team <- agg(groupBy(team, 'name'), monthdiff=c(NA, months_between(team$dates, lag(team$dates))))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(team$dates, lag(team$dates)))
team <- agg(groupBy(team, 'name'), monthdiff=months_between(select(team, 'dates'), lag(select(team, 'dates'))))
Expected output:
name | dates | monthdiff
-------------------------------
Thomas |2017-01-05 | NA
Thomas |2017-02-23 | 1
Thomas |2017-03-16 | 1
Thomas |2017-04-08 | 1
Bill |2017-06-08 | NA
Bill |2017-07-24 | 1
Bill |2017-09-05 | 2
Based on this post, I adapted the code for SparkR to get the answer.
#Create 'lagdates' variable with lag of dates
window <- orderBy(windowPartitionBy("name"), team$dates)
team <- withColumn(team, 'lagdates', over(lag(team$dates), window))
#Get months_between dates and lagdates
team <- withColumn(team, 'monthdiff', round(months_between(team$dates, team$lagdates)))
name | dates | lagdates | monthdiff
------------------------------------------
Bill | 2017-06-08 |null | null
Bill | 2017-07-24 |2017-06-08 | 2
Bill | 2017-09-05 |2017-07-24 | 1
Thomas| 2017-01-05 |null | null
Thomas| 2017-02-23 |2017-01-05 | 2
Thomas| 2017-03-16 |2017-02-23 | 1
Thomas| 2017-04-08 |2017-03-16 | 1