In my structure of NN, I wanna use different learning rate or optimizer , e.g. AdaGrad, in each layer. How to implement it? Wait for your help. Thks.
After you setup optimizer
to the model
, each parameter of link
in the model has update_rule
attribute (e.g. AdaGradRule
in this case), which defines how to update this parameter.
And each update_rule
has hyperparam
attribute separately, so you can overwrite these hyperparam
for each parameter in the link.
Below is a sample code,
class MLP(chainer.Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():
# input size of each layer will be inferred when omitted
self.l1 = L.Linear(n_units) # n_in -> n_units
self.l2 = L.Linear(n_units) # n_units -> n_units
self.l3 = L.Linear(n_out) # n_units -> n_out
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
model = MLP(args.unit, 10)
classifier_model = L.Classifier(model)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use() # Make a specified GPU current
classifier_model.to_gpu() # Copy the model to the GPU
# Setup an optimizer
optimizer = chainer.optimizers.AdaGrad()
optimizer.setup(classifier_model)
# --- After `optimizer.setup()`, you can modify `hyperparam` of each parameter ---
# 1. Change `update_rule` for specific parameter
# `l1` is `Linear` link, which has parameter `W` and `b`
classifier_model.predictor.l1.W.update_rule.hyperparam.lr = 0.01
# 2. Change `update_rule` for all parameters (W & b) of one link
for param in classifier_model.predictor.l2.params():
param.update_rule.hyperparam.lr = 0.01
# --- You can setup trainer module to train the model in the following...
...