How to implement row/column-wise outer product in arrayfire-python?
Here is analogical implementation in numpy.
A = np.random.randint(1,7, size=(3,2))
B = np.random.randint(1,7, size=(2,3))
X = np.einsum('ik,kj->kij', A,B)
X
array([[[ 8, 16, 12],
[ 8, 16, 12],
[ 4, 8, 6]],
[[15, 3, 12],
[ 5, 1, 4],
[ 5, 1, 4]]])
P.S. I'm looking for slight speed up for implementation of Mini-batch Gradient Descent, and I've found this library.
This isn't available in arrayfire as a native function. You can however implement something using broadcast and moddims like this:
>>> @af.broadcast
... def outer(a, b):
... am = af.moddims(a, a.shape[0], 1, a.shape[1])
... bm = af.moddims(b.T, 1, b.shape[1], b.shape[0])
... cm = am * bm
... return cm
...
>>> a
arrayfire.Array()
Type: float
[3 2 1 1]
0.6874 0.3552
0.9058 0.1589
0.5023 0.8857
>>> b
arrayfire.Array()
Type: float
[2 3 1 1]
0.2060 0.9028 0.7167
0.4522 0.0121 0.2723
>>> print(outer(a, b))
arrayfire.Array()
Type: float
[3 3 2 1]
0.1416 0.6206 0.4927
0.1866 0.8178 0.6492
0.1035 0.4535 0.3600
0.1606 0.0043 0.0967
0.0719 0.0019 0.0433
0.4006 0.0107 0.2412
If you have any particular feature requests, follow up on github: https://github.com/arrayfire/arrayfire-python/issues