I have pretrained a VGG network in chainer loadable npz file format, but add a new FC layer to last layer , and I modify last layer output class_number. I have already modify the layer name in order to use chainer loadable file to other unaltered layer. But I failed.
Traceback (most recent call last):
File "chainercv/trainer/train.py", line 194, in <module>
main()
File "chainercv/trainer/train.py", line 85, in main
mean_file=args.mean) # 可改为/home/machen/face_expr/result/snapshot_model.npz
File "/home/machen/face_expr/chainercv/links/model/faster_rcnn/faster_rcnn_vgg.py", line 131, in __init__
chainer.serializers.load_npz(pretrained_model, self)
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/serializers/npz.py", line 140, in load_npz
d.load(obj)
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/serializer.py", line 82, in load
obj.serialize(self)
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/link.py", line 794, in serialize
d[name].serialize(serializer[name])
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/link.py", line 794, in serialize
d[name].serialize(serializer[name])
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/link.py", line 550, in serialize
data = serializer(name, param.data)
File "/usr/local/anaconda3/lib/python3.6/site-packages/chainer-3.0.0a1-py3.6.egg/chainer/serializers/npz.py", line 106, in __call__
dataset = self.npz[key]
File "/usr/local/anaconda3/lib/python3.6/site-packages/numpy/lib/npyio.py", line 237, in __getitem__
raise KeyError("%s is not a file in the archive" % key)
KeyError: 'head/score_mod/W is not a file in the archive'
I made custom class to over write some layer like this. you can control load timing for pretrained model using init flag
class MyRes(chainer.Chain):
def __init__(self, path=default_path, init=False):
super(MyRes, self).__init__(
c1 = L.Convolution2D(None, 64, 7, 2, 3),
resnet = ResNet50Layers(pretrained_model=None),
)
if not init:
serializers.load_npz(path, self.resnet)
self.resnet.conv1 = self.c1
when you init for training you can simply add path of model
res = MyRes(path=pretrained_model_path)
when you load trained model of MyModel, set init flag like this
res = MyRes(init=True)
serializers.load_npz(saved_myres, self.resnet)