I'm working on facial expression recognition, and I'm using Keras. I've collected many datasets, and then I have applied data augmentation on the images, I've got about 500 000 images saved (as pixels) on a .csv file (same format as fer2013.csv).
This is the code I'm using :
def Zerocenter_ZCA_whitening_Global_Contrast_Normalize(list):
Intonumpyarray = numpy.asarray(list)
data = Intonumpyarray.reshape(img_width,img_height)
data2 = ZeroCenter(data)
data3 = zca_whitening(flatten_matrix(data2)).reshape(img_width,img_height)
data4 = global_contrast_normalize(data3)
data5 = numpy.rot90(data4,3)
return data5
def load_data():
train_x = []
train_y = []
val_x = []
val_y = []
test_x = []
test_y = []
f = open('ALL.csv')
csv_f = csv.reader(f)
for row in csv_f:
if str(row[2]) == "Training":
temp_list_train = []
for pixel in row[1].split():
temp_list_train.append(int(pixel))
data = Zerocenter_ZCA_whitening_Global_Contrast_Normalize(temp_list_train)
train_y.append(int(row[0]))
train_x.append(data.reshape(data_resh).tolist())
elif str(row[2]) == "PublicTest":
temp_list_validation = []
for pixel in row[1].split():
temp_list_validation.append(int(pixel))
data = Zerocenter_ZCA_whitening_Global_Contrast_Normalize(temp_list_validation)
val_y.append(int(row[0]))
val_x.append(data.reshape(data_resh).tolist())
elif str(row[2]) == "PrivateTest":
temp_list_test = []
for pixel in row[1].split():
temp_list_test.append(int(pixel))
data = Zerocenter_ZCA_whitening_Global_Contrast_Normalize(temp_list_test)
test_y.append(int(row[0]))
test_x.append(data.reshape(data_resh).tolist())
return train_x, train_y, val_x, val_y, test_x, test_y
And then I load data and feed them to the generator :
Train_x, Train_y, Val_x, Val_y, Test_x, Test_y = load_data()
Train_x = numpy.asarray(Train_x)
Train_x = Train_x.reshape(Train_x.shape[0],img_rows,img_cols)
Test_x = numpy.asarray(Test_x)
Test_x = Test_x.reshape(Test_x.shape[0],img_rows,img_cols)
Val_x = numpy.asarray(Val_x)
Val_x = Val_x.reshape(Val_x.shape[0],img_rows,img_cols)
Train_x = Train_x.reshape(Train_x.shape[0], img_rows, img_cols, 1)
Test_x = Test_x.reshape(Test_x.shape[0], img_rows, img_cols, 1)
Val_x = Val_x.reshape(Val_x.shape[0], img_rows, img_cols, 1)
Train_x = Train_x.astype('float32')
Test_x = Test_x.astype('float32')
Val_x = Val_x.astype('float32')
Train_y = np_utils.to_categorical(Train_y, nb_classes)
Test_y = np_utils.to_categorical(Test_y, nb_classes)
Val_y = np_utils.to_categorical(Val_y, nb_classes)
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
shear_range=0.03,
zoom_range=0.03,
vertical_flip=False)
datagen.fit(Train_x)
model.fit_generator(datagen.flow(Train_x, Train_y,
batch_size=batch_size),
samples_per_epoch=Train_x.shape[0],
nb_epoch=nb_epoch,
validation_data=(Val_x, Val_y))
When I run the code, RAM usage gets bigger and bigger until the pc freezes (I've have 16 Gb). It get stuck when loading_data()
is called. Any solution for this problem that can fits my code ?
Seems to be a duplicate of this question. Basically, you'll have to use fit_generator()
instead of fit()
and pass in a function that loads the data into your model one batch at a time instead of all at once.