What is the best ways to parallel ingest data from Teradata database into Hadoop with parallel data moving?
What is the recommended best practice to load data in parallelised streams and make unnecessary workload to Teradata?
The most scalable way to ingest data into Hadoop form teradata, which i found is to use Teradata connector for hadoop. It is included in Cloudera & Hortonworks distributions. I will show example base on Cloudera documentation, but the same works with Hortonworks as well:
Informatica big Data edition is using standard Scoop invocation via command line and submitting set of parameters to it. So the main question is - which driver to use to make parallel connections between two MPP systems.
Here is the link to the Cloudera documentation: Using the Cloudera Connector Powered by Teradata
And here is the digest from this documentation (You could find that this connector support different kinds of load balancing between connections):
Cloudera Connector Powered by Teradata supports the following methods for importing data from Teradata to Hadoop:
- split.by.amp
- split.by.value
- split.by.partition
- split.by.hash
- split.by.amp Method
This optimal method retrieves data from Teradata. The connector creates one mapper per available Teradata AMP, and each mapper subsequently retrieves data from each AMP. As a result, no staging table is required. This method requires Teradata 14.10 or higher.