I am calculating two distances and binning them in intervals of 0.1 in a 2D array. Currently I am doing this. However it takes a lot of time for large number of points
import numpy as np
from scipy.spatial import distance as d
dat=np.random.rand(100,3)
dd2d=np.zeros((10,10))
while len(dat)>0:
i=len(dat)-1
while i>0:
dist0=d.euclidean(dat[0],dat[i])
dist1=d.cosine(dat[0],dat[i])
ind0=int(dist0/0.1)
ind1=int(dist1/0.1)
if ind0>9 or ind1>9:
pass
else:
dd2d[ind0,ind1]+=1
i-=1
dat=np.delete(dat,0,axis=0)
print len(dat)
What is the most efficient way of doing this?
Also how can I convert the while
loops in my code into for
loops so that I can add progressbar/tqdm to keep track of run time.
If you are already importing scipy.spatial.distance
, might as well use pdist
. And then you're just making a 2d histogram. Use np.histogram2d
.
def binDists2d(dat, f1 = 'euclidean', f2 = 'cosine'):
dist0 = d.pdist(dat, f1)
dist1 = d.pdist(dat, f2)
rng = np.array([[0, 1], [0, 1]])
return np.histogram2d(dist0, dist1, bins = 10, range = rng)
pdist
only returns the upper triangular elements. If you want to do this manually, use np.triu_indices
, which you could use to generate the distances if scipy
is unavailable.
def cosdist(u, v):
return 1 - u.dot(v) / (np.linalg.norm(u) * np.linlg.norm(v))
def binDists2d(dat, f0 = lambda u, v: np.linalg.norm(u - v), f1 = cosdist):
i, j = np.triu_indices(dat.shape[0], 1)
dist0 = f0(dat[i], dat[j])
dist1 = f1(dat[i], dat[j])
rng = np.array([[0, 1], [0, 1]])
return np.histogram2d(dist0, dist1, bins = 10, range = rng)
EDIT: Less memory-hungry version:
def binDists2d(dat, f0, f1, n = 1, bins = 10, rng = np.array([[0, 1], [0, 1]])):
i_, j_ = np.triu_indices(dat.shape[0], 1)
out = np.zeros((bins, bins))
i_, j_ = np.array_split(i_, n), np.array_split(j_, n)
for k, (i, j) in enumerate(zip(i_, j_)):
dist0 = f0(dat[i], dat[j])
dist1 = f1(dat[i], dat[j])
out += np.histogram2d(dist0, dist1, bins = bins, range = rng)
print(str(k) + " of " + str(n) + "completed")
return out