Say, Y is a 7-dimensional array, and I need an efficient way to maximize it along the last 3 dimensions, that will work on GPU. As a result I need a 4-dimensional array with maximal values of Y and three 4-dimensional arrays with the indices of these values in the last three dimensions. I can do
[Y7, X7] = max(Y , [], 7);
[Y6, X6] = max(Y7, [], 6);
[Y5, X5] = max(Y6, [], 5);
Then I have already found the values (Y5) and the indices along the 5th dimension (X5). But I still need indices along the 6th and 7th dimensions.
Here's a way to do it. Let N
denote the number of dimensions along which to maximize.
Y
to collapse the last N
dimensions into one.N
subindices, one for each dimension.The following code works for any number of dimensions (not necessarily 7
and 3
as in your example). To achieve that, it handles the size of Y
generically and uses a comma-separated list obtained from a cell array to get N
outputs from sub2ind
.
Y = rand(2,3,2,3,2,3,2); % example 7-dimensional array
N = 3; % last dimensions along which to maximize
D = ndims(Y);
sz = size(Y);
[~, ind] = max(reshape(Y, [sz(1:D-N) prod(sz(D-N+1:end))]), [], D-N+1);
sub = cell(1,N);
[sub{:}] = ind2sub(sz(D-N+1:D), ind);
As a check, after running the above code, observe for example Y(2,3,1,2,:)
(shown as a row vector for convenience):
>> reshape(Y(2,3,1,2,:), 1, [])
ans =
0.5621 0.4352 0.3672 0.9011 0.0332 0.5044 0.3416 0.6996 0.0610 0.2638 0.5586 0.3766
The maximum is seen to be 0.9011
, which occurs at the 4
th position (where "position" is defined along the N=3
collapsed dimensions). In fact,
>> ind(2,3,1,2)
ans =
4
>> Y(2,3,1,2,ind(2,3,1,2))
ans =
0.9011
or, in terms of the N=3
subindices,
>> Y(2,3,1,2,sub{1}(2,3,1,2),sub{2}(2,3,1,2),sub{3}(2,3,1,2))
ans =
0.9011