Search code examples
pythonscikit-learntext-classificationrocmulticlass-classification

ROC for multiclass classification


I'm doing different text classification experiments. Now I need to calculate the AUC-ROC for each task. For the binary classifications, I already made it work with this code:

scaler = StandardScaler(with_mean=False)

enc = LabelEncoder()
y = enc.fit_transform(labels)

feat_sel = SelectKBest(mutual_info_classif, k=200)

clf = linear_model.LogisticRegression()

pipe = Pipeline([('vectorizer', DictVectorizer()),
                 ('scaler', StandardScaler(with_mean=False)),
                 ('mutual_info', feat_sel),
                 ('logistregress', clf)])
y_pred = model_selection.cross_val_predict(pipe, instances, y, cv=10)
# instances is a list of dictionaries

#visualisation ROC-AUC

fpr, tpr, thresholds = roc_curve(y, y_pred)
auc = auc(fpr, tpr)
print('auc =', auc)

plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',
label='AUC = %0.2f'% auc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.2])
plt.ylim([-0.1,1.2])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

But now I need to do it for the multiclass classification task. I read somewhere that I need to binarize the labels, but I really don't get how to calculate ROC for multiclass classification. Tips?


Solution

  • As people mentioned in comments you have to convert your problem into binary by using OneVsAll approach, so you'll have n_class number of ROC curves.

    A simple example:

    from sklearn.metrics import roc_curve, auc
    from sklearn import datasets
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.svm import LinearSVC
    from sklearn.preprocessing import label_binarize
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    
    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    
    y = label_binarize(y, classes=[0,1,2])
    n_classes = 3
    
    # shuffle and split training and test sets
    X_train, X_test, y_train, y_test =\
        train_test_split(X, y, test_size=0.33, random_state=0)
    
    # classifier
    clf = OneVsRestClassifier(LinearSVC(random_state=0))
    y_score = clf.fit(X_train, y_train).decision_function(X_test)
    
    # Compute ROC curve and ROC area for each class
    fpr = dict()
    tpr = dict()
    roc_auc = dict()
    for i in range(n_classes):
        fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])
    
    # Plot of a ROC curve for a specific class
    for i in range(n_classes):
        plt.figure()
        plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
        plt.plot([0, 1], [0, 1], 'k--')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('Receiver operating characteristic example')
        plt.legend(loc="lower right")
        plt.show()
    

    enter image description hereenter image description hereenter image description here