Search code examples
glmnetlasso-regression

default lambda sequence in glmnet for cross-validation


Does anybody know how cv.glmnet (in R's glmnet) or LassoCV (scikit-learn) chooses a sequence of regularization constants (lambdas), which they use in cross-validation? Thank you very much!


Solution

  • According to Friedman, Hastie & Tibshirani (2010) 'strategy is to select a minimum value lambda_min = epsilon * lambda_max, and construct a sequence of K values of lambda decreasing from lambda_max to lambda_min on the log scale. Typical values are epsilon = 0.001 and K = 100.'

    The following example generates data, calculates the lambda path and compares it to that of glmnet:

    ## Load library and generate some data to illustrate:
    library("glmnet")
    set.seed(1)
    n <- 100
    x <- matrix(rnorm(n*20), n, 20)
    y <- rnorm(n)
    
    ## Standardize variables: (need to use n instead of (n-1) as denominator)
    mysd <- function(z) sqrt(sum((z-mean(z))^2)/length(z))
    sx <- scale(x, scale = apply(x, 2, mysd))
    sx <- as.matrix(sx, ncol = 20, nrow = 100)
    
    ## Calculate lambda path (first get lambda_max):
    lambda_max <- max(abs(colSums(sx*y)))/n
    epsilon <- .0001
    K <- 100
    lambdapath <- round(exp(seq(log(lambda_max), log(lambda_max*epsilon), 
                                length.out = K)), digits = 10)
    lambdapath
    
    ## Compare with glmnet's lambda path:
    fitGLM <- glmnet(sx, y)
    fitGLM$lambda
    

    Note that glmnet does not compute solutions for all 100 (default) lambda values though, it stops earlier. Not sure what the rules for stopping are.

    See also How does glmnet compute the maximal lambda value


    Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.