Search code examples
pythonscikit-learnfeature-selectionnames

feature names from sklearn pipeline: not fitted error


I'm working with scikit learn on a text classification experiment. Now I would like to get the names of the best performing, selected features. I tried some of the answers to similar questions, but nothing works. The last lines of code are an example of what I tried. For example when I print feature_names, I get this error: sklearn.exceptions.NotFittedError: This SelectKBest instance is not fitted yet. Call 'fit' with appropriate arguments before using this method. Any solutions?

scaler = StandardScaler(with_mean=False) 

enc = LabelEncoder()
y = enc.fit_transform(labels)

feat_sel = SelectKBest(mutual_info_classif, k=200)  
clf = linear_model.LogisticRegression()

pipe = Pipeline([('vectorizer', DictVectorizer()),
                 ('scaler', StandardScaler(with_mean=False)),
                 ('mutual_info', feat_sel),
                 ('logistregress', clf)])

feature_names = pipe.named_steps['mutual_info']
X.columns[features.transform(np.arange(len(X.columns)))]

Solution

  • You first have to fit the pipeline and then call feature_names:

    Solution

    scaler = StandardScaler(with_mean=False) 
    
    enc = LabelEncoder()
    y = enc.fit_transform(labels)
    
    feat_sel = SelectKBest(mutual_info_classif, k=200)  
    clf = linear_model.LogisticRegression()
    
    pipe = Pipeline([('vectorizer', DictVectorizer()),
                     ('scaler', StandardScaler(with_mean=False)),
                     ('mutual_info', feat_sel),
                     ('logistregress', clf)])
    
    # Now fit the pipeline using your data
    pipe.fit(X, y)
    
    #now can the pipe.named_steps
    feature_names = pipe.named_steps['mutual_info']
    X.columns[features.transform(np.arange(len(X.columns)))]
    

    General information

    From the documentation example here you can see the

    anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
    

    This sets some initial parameters (k parameter for anova and C parameter for svc)

    and then calls fit(X,y) to fit the pipeline.

    EDIT:

    for the new error, since your X is a list of dictionaries I see one way to call the columns method that you want. This can be done using pandas.

    X= [{'age': 10, 'name': 'Tom'}, {'age': 5, 'name': 'Mark'}]
    
    df = DataFrame(X) 
    len(df.columns)
    

    result:

    2
    

    Hope this helps