I'm trying to make a contour that follows the edges of the 'pixels' in a pcolor
plot in Matlab. This is probably best explained in pictures. Here is a plot of my data. There is a distinct boundary between the yellow data (data==1) and the blue data (data==0):
Note that this is a pcolor
plot so each 'square' is essentially a pixel. I want to return a contour that follows the faces of the yellow data pixels, not just the edge of the yellow data.
So the output contour (green line) passes through the mid-points of the face (red dots) of the pixels.
Note that I don't want the contour to follow the centre points of the data (black dots), which would do something like this green line. This could be achieved easily with contour
.
Also, if it's any help, I have a few grids which may be useful. I have the points in the middle of the pixels (obviously, as that's what I've plotted here), I also have the points on the corners, AND I have the points on the west/east faces and the north/south faces. IF you're familiar with Arakawa grids, this is an Arakawa-C grid, so I have the rho-, u-, v- and psi- points.
I've tried interpolation, interweaving grids, and a few other things but I'm not having any luck. Any help would be HUGELY appreciated and would stop me going crazy.
Cheers, Dave
EDIT:
Sorry, I simplified the images to make what I was trying to explain more obvious, but here is a larger (zoomed out) image of the region I'm trying to separate:
As you can see, it's a complex outline which heads in a "southwest" direction before wrapping around and moving back "northeast". And here is the red line that I'd like to draw, through the black points:
You can solve this with a couple of modifications to a solution I posted to a related question. I used a section of the sample image mask in the question for data
. First, you will need to fill the holes in the mask, which you can do using imfill
from the the Image Processing Toolbox:
x = 1:15; % X coordinates for pixels
y = 1:17; % Y coordinates for pixels
mask = imfill(data, 'holes');
Next, apply the method from my other answer to compute an ordered set of outline coordinates (positioned on the pixel corners):
% Create raw triangulation data:
[cx, cy] = meshgrid(x, y);
xTri = bsxfun(@plus, [0; 1; 1; 0], cx(mask).');
yTri = bsxfun(@plus, [0; 0; 1; 1], cy(mask).');
V = [xTri(:) yTri(:)];
F = reshape(bsxfun(@plus, [1; 2; 3; 1; 3; 4], 0:4:(4*nnz(mask)-4)), 3, []).';
% Trim triangulation data:
[V, ~, Vindex] = unique(V, 'rows');
V = V-0.5;
F = Vindex(F);
% Create triangulation and find free edge coordinates:
TR = triangulation(F, V);
freeEdges = freeBoundary(TR).';
xOutline = V(freeEdges(1, [1:end 1]), 1); % Ordered edge x coordinates
yOutline = V(freeEdges(1, [1:end 1]), 2); % Ordered edge y coordinates
Finally, you can get the desired coordinates at the centers of the pixel edges like so:
ex = xOutline(1:(end-1))+diff(xOutline)./2;
ey = yOutline(1:(end-1))+diff(yOutline)./2;
And here's a plot showing the results:
imagesc(x, y, data);
axis equal
set(gca, 'XLim', [0.5 0.5+size(mask, 2)], 'YLim', [0.5 0.5+size(mask, 1)]);
hold on;
plot(ex([1:end 1]), ey([1:end 1]), 'r', 'LineWidth', 2);
plot(ex, ey, 'k.', 'LineWidth', 2);