I'm trying to read parquet file into Hive on Spark.
So I've found out that I should do something kind of that:
CREATE TABLE avro_test ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe' STORED
AS AVRO TBLPROPERTIES ('avro.schema.url'='/files/events/avro_events_scheme.avsc');
CREATE EXTERNAL TABLE parquet_test LIKE avro_test STORED AS PARQUET LOCATION '/files/events/parquet_events/';
where my avro scheme is:
{
"type" : "parquet_file",
"namespace" : "events",
"name" : "events",
"fields" : [
{ "name" : "category" , "type" : "string" },
{ "name" : "duration" , "type" : "long" },
{ "name" : "name" , "type" : "string" },
{ "name" : "user_id" , "type" : "string"},
{ "name" : "value" , "type" : "long" }
]
}
As result I receive an error:
org.apache.spark.sql.catalyst.parser.ParseException:
Operation not allowed: ROW FORMAT SERDE is incompatible with format 'avro',
which also specifies a serde(line 1, pos 0)
I think we have to add inputforamt and outputformat classes.
CREATE TABLE parquet_test
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES (
'avro.schema.url''avro.schema.url'='/hadoop/avro_events_scheme.avsc');
I hope above would work.