I'm trying to create a NN to approximate functions (sine, cos, custom...) but I'm struggling with the format, I don't want to use input-label, but rather, input-output. How do I change it?
I'm following this tutorial
import tensorflow as tf
import random
from math import sin
import numpy as np
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_inputs = 1 # CHANGES HERE
n_outputs = 1 #CHANGES HERE
batch_size = 100
x = tf.placeholder('float', [None, n_inputs]) #CHANGES HERE
y = tf.placeholder('float', [None, n_outputs]) #CHANGES HERE
def neural_network_model(data):
hidden_layer_1 = {'weights':tf.Variable(tf.random_normal([n_inputs, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))} #CHANGES HERE
hidden_layer_2 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_layer_3 = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_outputs])),
'biases': tf.Variable(tf.random_normal([n_outputs]))} #CHANGES HERE
l1 = tf.add(tf.matmul(data, hidden_layer_1['weights']), hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_layer_3['weights']), hidden_layer_3['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3, output_layer['weights']), output_layer['biases'])
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optmizer = tf.train.AdamOptimizer().minimize(cost)
epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
loss = 0
for _ in range(batch_size^2): #CHANGES HERE
batch_x, batch_y = generate_input_output(batch_size) #CHANGES HERE
a, c = sess.run([optmizer, cost], feed_dict={x: batch_x, y:batch_y})
loss += c
print("Epoch:", epoch+1, "out of", epochs, "- Loss:", loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
test_x, test_y = generate_input_output(batch_size) #CHANGES HERE
print('Accuracy', accuracy.eval({x:test_x, y:test_y}))
def desired_function(x): #CHANGES HERE
return sin(x)
def generate_input_output(batch_size): #CHANGES HERE
batch_x = [random.uniform(-10, 10) for _ in range(batch_size)]
batch_y = [desired_function(x) for x in batch_x]
batch_x = np.reshape(batch_x, (-1, 1))
batch_y = np.reshape(batch_y, (-1, 1))
return batch_x, batch_y
train_neural_network(x)
Have not tried it myself, so there might be more things you need to change to get the model to run, but you will definitely want to change this line:
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
to something more like:
cost = tf.reduce_sum(tf.square(prediction - y))
Basically, your cost function is much simpler in this case...you just want to reduce the sum of the squared difference between the network's output and the expected y value.