I want to create a multi-layered dynamic RNN-based decoder that uses an attention mechanism. To do this, I first create an attention mechanism:
attention_mechanism = BahdanauAttention(num_units=ATTENTION_UNITS,
memory=encoder_outputs,
normalize=True)
Then I use the AttentionWrapper
to wrap a LSTM cell with the attention mechanism:
attention_wrapper = AttentionWrapper(cell=self._create_lstm_cell(DECODER_SIZE),
attention_mechanism=attention_mechanism,
output_attention=False,
alignment_history=True,
attention_layer_size=ATTENTION_LAYER_SIZE)
where self._create_lstm_cell
is defined as follows:
@staticmethod
def _create_lstm_cell(cell_size):
return BasicLSTMCell(cell_size)
I then do some bookkeeping (e.g. creating my MultiRNNCell
, creating an initial state, creating a TrainingHelper
, etc.)
attention_zero = attention_wrapper.zero_state(batch_size=tf.flags.FLAGS.batch_size, dtype=tf.float32)
# define initial state
initial_state = attention_zero.clone(cell_state=encoder_final_states[0])
training_helper = TrainingHelper(inputs=self.y, # feed in ground truth
sequence_length=self.y_lengths) # feed in sequence lengths
layered_cell = MultiRNNCell(
[attention_wrapper] + [ResidualWrapper(self._create_lstm_cell(cell_size=DECODER_SIZE))
for _ in range(NUMBER_OF_DECODER_LAYERS - 1)])
decoder = BasicDecoder(cell=layered_cell,
helper=training_helper,
initial_state=initial_state)
decoder_outputs, decoder_final_state, decoder_final_sequence_lengths = dynamic_decode(decoder=decoder,
maximum_iterations=tf.flags.FLAGS.max_number_of_scans // 12,
impute_finished=True)
But I receive the following error: AttributeError: 'LSTMStateTuple' object has no attribute 'attention'
.
What is the correct way to add an attention mechanism to a MultiRNNCell dynamic decoder?
Have you tried using the attention wrapper provided by tf.contrib?
Here is an example using both an attention wrapper and dropout:
cells = []
for i in range(n_layers):
cell = tf.contrib.rnn.LSTMCell(n_hidden, state_is_tuple=True)
cell = tf.contrib.rnn.AttentionCellWrapper(
cell, attn_length=40, state_is_tuple=True)
cell = tf.contrib.rnn.DropoutWrapper(cell,output_keep_prob=0.5)
cells.append(cell)
cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
init_state = cell.zero_state(batch_size, tf.float32)