Search code examples
pythonpython-3.xmachine-learningtensorflowtraceback

ValueError: Dimensions must be equal, but are 784 and 500 for 'MatMul_1' (op: 'MatMul') with input shapes: [?,784], [500,500]


I'm new to tensorflow and I'm following a tutorial by sentdex. I keep on getting the error -

ValueError: Dimensions must be equal, but are 784 and 500 for 
'MatMul_1' (op: 'MatMul') with input shapes: [?,784], [500,500].

The snippet where I believe is causing the issue is -

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), 
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']), 
output_layer['biases'])

return output

Although I'm a noob and may be wrong. My entire code is -

mnist = input_data.read_data_sets("/tmp/ data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, 
n_nodes_hl1])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights': 
tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights': 
tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, 
n_classes])),
                'biases': tf.Variable(tf.random_normal([n_classes]))}

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), 
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']), 
output_layer['biases'])

return output


def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 10

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for epoch in range(hm_epochs):
        epoch_loss = 0
        for _ in range(int(mnist.train.num_examples / batch_size)):
            epoch_x, epoch_y = mnist.train.next_batch(batch_size)
            _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, 
y: epoch_y})
            epoch_loss += c
        print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', 
epoch_loss)

    correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
    print('Accuracy:', accuracy.eval({x: mnist.test.images, y: 
mnist.test.labels}))


train_neural_network(x)

Please help. By the way, I'm running on Mac in a virtual environment with Python 3.6.1 and Tensorflow 1.2. And I am using the IDE Pycharm CE. If any of that information is useful.


Solution

  • The problem is that you are referencing data instead of l1. Instead of

    l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
                          hidden_2_layer['biases'])
    

    your code should read

    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), 
                          hidden_2_layer['biases'])
    

    and ditto for l3. Instead of

    l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
                          hidden_3_layer['biases'])
    

    you should have

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), 
                          hidden_3_layer['biases'])
    

    The following code ran without error for me:

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    n_nodes_hl1 = 500
    n_nodes_hl2 = 500
    n_nodes_hl3 = 500
    
    n_classes = 10
    batch_size = 100
    
    x = tf.placeholder('float', [None, 784])
    y = tf.placeholder('float')
    
    def print_shape(obj):
        print(obj.get_shape().as_list())
    
    def neural_network_model(data):
        hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
                                                                   n_nodes_hl1])),
                          'biases':
                          tf.Variable(tf.random_normal([n_nodes_hl1]))}
    
        hidden_2_layer = {'weights':
                          tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                          'biases':
                          tf.Variable(tf.random_normal([n_nodes_hl2]))}
    
        hidden_3_layer = {'weights':
                          tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                          'biases':
                          tf.Variable(tf.random_normal([n_nodes_hl3]))}
    
        output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
                                                                 n_classes])),
                        'biases': tf.Variable(tf.random_normal([n_classes]))}
        print_shape(data)
        l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
                    hidden_1_layer['biases'])
        print_shape(l1)
        l1 = tf.nn.relu(l1)
        print_shape(l1)
        l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']),
                    hidden_2_layer['biases'])
        l2 = tf.nn.relu(l2)
    
        l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']),
                    hidden_3_layer['biases'])
        l3 = tf.nn.relu(l3)
    
        output = tf.add(tf.matmul(l3, output_layer['weights']),
                        output_layer['biases'])
    
        return output
    
    
    def train_neural_network(x):
        prediction = neural_network_model(x)
        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
                              (logits=prediction, labels=y))
        optimizer = tf.train.AdamOptimizer().minimize(cost)
    
        hm_epochs = 10
    
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
    
            for epoch in range(hm_epochs):
                epoch_loss = 0
                for _ in range(int(mnist.train.num_examples / batch_size)):
                    epoch_x, epoch_y = mnist.train.next_batch(batch_size)
                    _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x,
                                                                  y: epoch_y})
                    epoch_loss += c
                print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:',
                      epoch_loss)
    
            correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
            print('Accuracy:', accuracy.eval({x: mnist.test.images, y:
                                              mnist.test.labels}))
    
    
    train_neural_network(x)