Search code examples
scalaapache-spark-ml

Spark-ML writing custom Model, Transformer


This is on Spark 2.0.1

I'm trying to compile and use the SimpleIndexer example from here.

import org.apache.spark.ml.param._
import org.apache.spark.ml.util._
import org.apache.spark.ml._

import org.apache.spark.sql._
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._

trait SimpleIndexerParams extends Params {
  final val inputCol= new Param[String](this, "inputCol", "The input column")
  final val outputCol = new Param[String](this, "outputCol", "The output column")
}

class SimpleIndexer(override val uid: String) extends Estimator[SimpleIndexerModel] with SimpleIndexerParams {

  def setInputCol(value: String) = set(inputCol, value)

  def setOutputCol(value: String) = set(outputCol, value)

  def this() = this(Identifiable.randomUID("simpleindexer"))

  override def copy(extra: ParamMap): SimpleIndexer = {
    defaultCopy(extra)
  }

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex($(inputCol))
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField($(outputCol), IntegerType, false))
  }

  override def fit(dataset: Dataset[_]): SimpleIndexerModel = {
    import dataset.sparkSession.implicits._
    val words = dataset.select(dataset($(inputCol)).as[String]).distinct
      .collect()
    new SimpleIndexerModel(uid, words)
 ; }
}

class SimpleIndexerModel(
  override val uid: String, words: Array[String]) extends Model[SimpleIndexerModel] with SimpleIndexerParams {

  override def copy(extra: ParamMap): SimpleIndexerModel = {
    defaultCopy(extra)
  }

  private val labelToIndex: Map[String, Double] = words.zipWithIndex.
    map{case (x, y) => (x, y.toDouble)}.toMap

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex($(inputCol))
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField($(outputCol), IntegerType, false))
  }

  override def transform(dataset: Dataset[_]): DataFrame = {
    val indexer = udf { label: String => labelToIndex(label) }
    dataset.select(col("*"),
      indexer(dataset($(inputCol)).cast(StringType)).as($(outputCol)))
  }
}

However, I'm getting an error during transformation:

val df = Seq(
  (10, "hello"),
  (20, "World"),
  (30, "goodbye"),
  (40, "sky")
).toDF("id", "phrase")

val si = new SimpleIndexer().setInputCol("phrase").setOutputCol("phrase_idx").fit(df)

si.transform(df).show(false)

// java.util.NoSuchElementException: Failed to find a default value for inputCol

Any idea how to fix it?


Solution

  • Okay, I figured out by going into the source code for CountVectorizer. Looks like I need to replace new SimpleIndexerModel(uid, words) with copyValues(new SimpleIndexerModel(uid, words).setParent(this)). So the new fit method becomes

      override def fit(dataset: Dataset[_]): SimpleIndexerModel = {
        import dataset.sparkSession.implicits._
        val words = dataset.select(dataset($(inputCol)).as[String]).distinct
          .collect()
        //new SimpleIndexerModel(uid, words)
        copyValues(new SimpleIndexerModel(uid, words).setParent(this))
      }
    

    With this, the params are recognized, and transform happens neatly.

    val si = new SimpleIndexer().setInputCol("phrase").setOutputCol("phrase_idx").fit(df)
    
    si.explainParams
    // res3: String =
    // inputCol: The input column (current: phrase)
    // outputCol: The output column (current: phrase_idx)
    
    si.transform(df).show(false)
    // +---+-------+----------+
    // |id |phrase |phrase_idx|
    // +---+-------+----------+
    // |10 |hello  |1.0       |
    // |20 |World  |0.0       |
    // |30 |goodbye|3.0       |
    // |40 |sky    |2.0       |
    // +---+-------+----------+