I have a dataframe with three columns, viz., date
,commodity
and values
. I want to add another column, median_20
, the rolling median of last 20 days for each commodity
in the df
. Also, I want to add other columns which show value n
days before, for example, lag_1
column shows value 1 day before for a given commodity
, lag_2
shows value 2 days before, and so on. My df
is quite big (>2 million rows) in size.
dates = pd.date_range('2017-01-01', '2017-07-02')
df1 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'GOLD'})
df2 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'SILVER'})
df = pd.concat([df1, df2])
df = df.sort('date')
date commodity value
0 2017-01-01 GOLD -1.239422
0 2017-01-01 SILVER -0.209840
1 2017-01-02 SILVER 0.146293
1 2017-01-02 GOLD 1.422454
2 2017-01-03 GOLD 0.453222
...
Try:
import pandas as pd
import numpy as np
# create dataframe
dates = pd.date_range('2017-01-01', '2017-07-02')
df1 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'GOLD'})
df2 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'SILVER'})
df = pd.concat([df1, df2])
df = df.sort_values(by='date').reset_index(drop=True)
# create columns
df['median_20_temp'] = df.groupby('market')['commodity'].rolling(20).median()
df['median_20'] = df.groupby('market')['median_20_temp'].shift(1)
df['lag_1'] = df.groupby('market')['commodity'].shift(1)
df['lag_2'] = df.groupby('market')['commodity'].shift(2)
df.drop(['median_20_temp'], axis=1, inplace=True)
The following should work with version 0.16.2
:
import numpy as np
import pandas as pd
np.random.seed(123)
dates = pd.date_range('2017-01-01', '2017-07-02')
df1 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'GOLD'})
df2 = pd.DataFrame({'date':dates, 'commodity':np.random.normal(size = len(dates)), 'market':'SILVER'})
df = pd.concat([df1, df2])
df = df.sort('date').reset_index(drop=True)
# create columns
df['median_20_temp'] = df.groupby('market')['commodity'].apply(lambda s: pd.rolling_median(s, 20))
df['median_20'] = df.groupby('market')['median_20_temp'].shift(1)
df['lag_1'] = df.groupby('market')['commodity'].shift(1)
df['lag_2'] = df.groupby('market')['commodity'].shift(2)
df.drop(['median_20_temp'], axis=1, inplace=True)
I hope this helps.