I have a list of sparse vector:
print(type(downsample_matrix)) # Display <class 'list'>
print(type(downsample_matrix[0])) # Display <class 'scipy.sparse.csr.csr_matrix'>
I would like to use the function scikit learn cosine_similarity
on downsampled_matrix
but I get the following error:
ValueError Traceback (most recent call last)
<ipython-input-27-5997ca6abb2d> in <module>()
19 downsample_matrix.append(vector)
20 downsample_coefficient = 0
---> 21 similarity_matrix = cosine_similarity(downsample_matrix)
22 plt.matshow(similarity_matrix)
23 plt.show()
/home/venv/lib/python3.5/site-packages/sklearn/metrics/pairwise.py in cosine_similarity(X, Y, dense_output)
908 # to avoid recursive import
909
--> 910 X, Y = check_pairwise_arrays(X, Y)
911
912 X_normalized = normalize(X, copy=True)
/home/venv/lib/python3.5/site-packages/sklearn/metrics/pairwise.py in check_pairwise_arrays(X, Y, precomputed, dtype)
104 if Y is X or Y is None:
105 X = Y = check_array(X, accept_sparse='csr', dtype=dtype,
--> 106 warn_on_dtype=warn_on_dtype, estimator=estimator)
107 else:
108 X = check_array(X, accept_sparse='csr', dtype=dtype,
/home/venv/lib/python3.5/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
380 force_all_finite)
381 else:
--> 382 array = np.array(array, dtype=dtype, order=order, copy=copy)
383
384 if ensure_2d:
ValueError: setting an array element with a sequence.
I have no problem when my list is made of nd.array
:
print(type(downsample_matrix)) # Display <class 'list'>
print(type(downsample_matrix[0])) # Display <class 'numpy.ndarray'>
How can I apply cosine_similarity on my list of sparce vectors?
Create a small sparse matrix. Note that it is not a subclass of ndarray
. It stores its data in 3 arrays - data and indices:
In [196]: M = sparse.csr_matrix([[0,1,0],[1,0,1]])
In [197]: M
Out[197]:
<2x3 sparse matrix of type '<class 'numpy.int32'>'
with 3 stored elements in Compressed Sparse Row format>
In [198]: M.data
Out[198]: array([1, 1, 1], dtype=int32)
In [199]: M.indices
Out[199]: array([1, 0, 2], dtype=int32)
In [200]: M.indptr
Out[200]: array([0, 1, 3], dtype=int32)
If I try to make an array from a list of this matrix, I get an object dtype array, with 3 elements (pointers to this one matrix):
In [201]: alist = [M,M,M]
In [202]: np.array(alist)
Out[202]: /usr/local/lib/python3.5/dist-packages/scipy/sparse/compressed.py:294: SparseEfficiencyWarning: Comparing sparse matrices using >= and <= is inefficient, using <, >, or !=, instead.
"using <, >, or !=, instead.", SparseEfficiencyWarning)
array([ <2x3 sparse matrix of type '<class 'numpy.int32'>'
with 3 stored elements in Compressed Sparse Row format>,
<2x3 sparse matrix of type '<class 'numpy.int32'>'
with 3 stored elements in Compressed Sparse Row format>,
<2x3 sparse matrix of type '<class 'numpy.int32'>'
with 3 stored elements in Compressed Sparse Row format>], dtype=object)
If in addition I specify the dtype, I get your error:
In [203]: np.array(alist,dtype=int)
...
ValueError: setting an array element with a sequence.
It can't convert the list into an array of numbers.
But if it's a list of dense arrays, I get a 3d array:
In [204]: np.array([M.A,M.A,M.A],dtype=int)
Out[204]:
array([[[0, 1, 0],
[1, 0, 1]],
[[0, 1, 0],
[1, 0, 1]],
[[0, 1, 0],
[1, 0, 1]]])
In [205]: _.shape
Out[205]: (3, 2, 3)
I can also concatenate the sparse matrices with a sparse version of vstack
or hstack
.
In [206]: sparse.vstack(alist)
Out[206]:
<6x3 sparse matrix of type '<class 'numpy.int32'>'
with 9 stored elements in Compressed Sparse Row format>
In [207]: _.A
Out[207]:
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0],
[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=int32)
Note the shape, (6,3). A sparse matrix is always 2d.
sparse.vstack
passes the task to sparse.bmat
, which constructs a new sparse matrix from 'blocks'. It does so by joining the coo
representations of the blocks with a appropriate offsets.
Since cosine_similarity
expects a 2d array or sparse matrix, you'll have to use the sparse.vstack
to join the matrices. Or reshape the result of the 3d array join
In [212]: cosine_similarity(sparse.vstack(alist))
Out[212]:
array([[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.]])
In [213]: cosine_similarity( np.array([M.A,M.A,M.A],dtype=int).reshape(-1,3))
Out[213]:
array([[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 1., 0., 1.]])