I am trying to have parallel table for the first layer of Alexnet in Torch, Lua. I want to pass two Batches of RGB images to the network and then send the addition of them to the next layer. For example: suppose that I want to send images with 6 channels to the first layer of alexnet but in this case, I want to send two batches of 3 channels each to the first parallel layers , join them and then send the output to the next layer. the actual code is like this:
net = nn.Sequential()
net:add(nn.SpatialConvolution(3,96,11,11,4,4,2,2))
net:add(nn.SpatialBatchNormalization(96))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(3,3,2,2))
net:add(nn.SpatialConvolution(96,256,5,5,1,1,2,2))
net:add(nn.SpatialBatchNormalization(256))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(3,3,2,2))
net:add(nn.SpatialConvolution(256,384,3,3,1,1,1,1))
and the code I thought it would work is :
net = nn.Sequential()
c = nn.ParallelTable()
c:add(nn.SpatialConvolution(3,48,11,11,4,4,2,2))
c:add(nn.SpatialConvolution(3,48,11,11,4,4,2,2))
net:add(c)
net:add(nn.JoinTable(1,8))
net:add(nn.SpatialBatchNormalization(96))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(3,3,2,2))
and the error I got is :
In 1 module of nn.ParallelTable: /torch/install/share/lua/5.1/cudnn/init.lua:171: assertion failed!
I was wondering where I am going wrong with this implementation and any help would be much appreciated.
Thanks
Your error is on the line net:add(nn.JoinTable(1,8))
, it should be 3 instead of 8. This value is the number of dimensions (without counting the batch dimension as a dimension) of your input tensor. Here you feed your network with 3D images, then you should write net:add(nn.JoinTable(1,3))
I used the following code and all goes well
require 'nn'
require 'cutorch'
require 'cunn'
require 'cudnn'
net = nn.Sequential()
c = nn.ParallelTable()
c:add(nn.SpatialConvolution(3,48,11,11,4,4,2,2))
c:add(nn.SpatialConvolution(3,48,11,11,4,4,2,2))
net:add(c)
net:add(nn.JoinTable(1,3))
net:add(nn.SpatialBatchNormalization(96))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(3,3,2,2))
net:cuda()
input1 = torch.rand(128,3,227, 227):cuda()
input2 = torch.rand(128,3,227,227):cuda()
out = net:forward({input1, input2})
print(out:size())