I'm using mxnet's fine-tune example to fine-tune my own data with this code:
https://github.com/dmlc/mxnet/blob/master/example/image-classification/fine-tune.py
By viewing common/fit.py, I got no idea of how to save temp model when I fine tuning.
For example, I wanna save .params files every 5000 iters, how can I do it? THX!
http://mxnet.io/api/python/callback.html
Try to use the mx.callback API.
module.fit(iterator, num_epoch=n_epoch,
... epoch_end_callback = mx.callback.do_checkpoint("mymodel", 1))
Start training with [cpu(0)]
Epoch[0] Resetting Data Iterator
Epoch[0] Time cost=0.100
Saved checkpoint to "mymodel-0001.params"
Epoch[1] Resetting Data Iterator
Epoch[1] Time cost=0.060
Saved checkpoint to "mymodel-0002.params"