Search code examples
arduinointerruptarduino-mkr1000

pulse sensor + arduino mkr1000 to calculate BPM


tldr; what is an easy/logical way (for a beginner) to calculate BPM using pulse sensor and mkr1000? I don't want any visualizations or processing sketch, but just print BPM values

Please bear with me, I am a newbie at this and i've tried my best to understand this and fix this issue, but in vain.

I am using the pulse sensor (SEN-11574) with Arduino mkr1000 to calculate the BPM and print it in serial monitor. I was able to get raw readings using their starter code

//  Variables
int PulseSensorPurplePin = 0;        // Pulse Sensor PURPLE WIRE connected to ANALOG PIN 0
int LED13 = 13;   //  The on-board Arduion LED


int Signal;                // holds the incoming raw data. Signal value can range from 0-1024
int Threshold = 550;            // Determine which Signal to "count as a beat", and which to ingore. 


// The SetUp Function:
void setup() {
  pinMode(LED13,OUTPUT);         // pin that will blink to your heartbeat!
   Serial.begin(9600);         // Set's up Serial Communication at certain speed. 

}

// The Main Loop Function
void loop() {

  Signal = analogRead(PulseSensorPurplePin);  // Read the PulseSensor's value. 
                                              // Assign this value to the "Signal" variable.

   Serial.println(Signal);                    // Send the Signal value to Serial Plotter.


   if(Signal > Threshold){                          // If the signal is above "550", then "turn-on" Arduino's on-Board LED.  
     digitalWrite(LED13,HIGH);          
   } else {
     digitalWrite(LED13,LOW);                //  Else, the sigal must be below "550", so "turn-off" this LED.
   }


delay(10); 
}

However the real problem is that I am unable to calculate the BPM using their example code available on their website here From what I understand, the interrupt timer function in the Interrupt.ino file is not compatible with mkr1000. Attached is this code for your reference.

// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE.
// Timer 2 makes sure that we take a reading every 2 miliseconds
ISR(TIMER2_COMPA_vect){                         // triggered when Timer2 counts to 124
  cli();                                      // disable interrupts while we do this
  Signal = analogRead(pulsePin);              // read the Pulse Sensor
  sampleCounter += 2;                         // keep track of the time in mS with this variable
  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

    //  find the peak and trough of the pulse wave
  if(Signal < thresh && N > (IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
    if (Signal < T){                        // T is the trough
      T = Signal;                         // keep track of lowest point in pulse wave
    }
  }

  if(Signal > thresh && Signal > P){          // thresh condition helps avoid noise
    P = Signal;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      digitalWrite(blinkPin,HIGH);                // turn on pin 13 LED
      IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = IBI;
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag
        sei();                               // enable interrupts again
        return;                              // IBI value is unreliable so discard it
      }


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values
      BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      QS = true;                              // set Quantified Self flag
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }
  }

  if (Signal < thresh && Pulse == true){   // when the values are going down, the beat is over
    digitalWrite(blinkPin,LOW);            // turn off pin 13 LED
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 530;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }

  sei();                                   // enable interrupts when youre done!
}// end isr

On the interrupt-notes file they mention another work-around for processors that are not compatible with this code, but even after hours of following the intructions, the code didn't work, again with errors with timer interrupt functions.

Next, I used this guide but again, it didn't work either and just prints raw signal value that constantly changes (S1023). The code is attached (2 tabs):

/*  Pulse Sensor Amped 1.4    by Joel Murphy and Yury Gitman   http://www.pulsesensor.com
Adapted by sdizdarevic
----------------------  Notes ----------------------  ---------------------- 
This code:
1) Blinks an LED to User's Live Heartbeat   PIN 6
2) Fades an LED to User's Live HeartBeat
3) Determines BPM
4) Prints All of the Above to Serial
Read Me:
https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/blob/master/README.md   
 ----------------------       ----------------------  ----------------------
*/


//  Variables
int pulsePin = 0;                 // Pulse Sensor purple wire connected to analog pin 0
int blinkPin = 6;                // pin to blink led at each beat
//int fadePin = 5;                  // pin to do fancy classy fading blink at each beat
//int fadeRate = 0;                 // used to fade LED on with PWM on fadePin

// Volatile Variables, used in the interrupt service routine!
volatile int BPM;                   // int that holds raw Analog in 0. updated every 2mS
volatile int Signal;                // holds the incoming raw data
volatile int IBI = 600;             // int that holds the time interval between beats! Must be seeded! 
volatile boolean Pulse = false;     // "True" when User's live heartbeat is detected. "False" when not a "live beat". 
volatile boolean QS = false;        // becomes true when Arduoino finds a beat.



volatile int rate[10];                    // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;          // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;           // used to find IBI
volatile int P =512;                      // used to find peak in pulse wave, seeded
volatile int T = 512;                     // used to find trough in pulse wave, seeded
volatile int thresh = 525;                // used to find instant moment of heart beat, seeded
volatile int amp = 100;                   // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;        // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;      // used to seed rate array so we startup with reasonable BPM




// Regards Serial OutPut  -- Set This Up to your needs
static boolean serialVisual = false;   // Set to 'false' by Default.  Re-set to 'true' to see Arduino Serial Monitor ASCII Visual Pulse 


void setup(){
  pinMode(blinkPin,OUTPUT);         // pin that will blink to your heartbeat!
  //pinMode(fadePin,OUTPUT);          // pin that will fade to your heartbeat!
  Serial.begin(115200);             // we agree to talk fast!
  //interruptSetup();                 // sets up to read Pulse Sensor signal every 2mS 
   // IF YOU ARE POWERING The Pulse Sensor AT VOLTAGE LESS THAN THE BOARD VOLTAGE, 
   // UN-COMMENT THE NEXT LINE AND APPLY THAT VOLTAGE TO THE A-REF PIN
//   analogReference(EXTERNAL);   
}


//  Where the Magic Happens
void loop(){

//
//
Signal = analogRead(pulsePin);              // read the Pulse Sensor 
  sampleCounter += 2;                         // keep track of the time in mS with this variable
  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

    //  find the peak and trough of the pulse wave
  if(Signal < thresh && N > (IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
    if (Signal < T){                        // T is the trough
      T = Signal;                         // keep track of lowest point in pulse wave 
    }
  }

  if(Signal > thresh && Signal > P){          // thresh condition helps avoid noise
    P = Signal;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){        
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      digitalWrite(blinkPin,HIGH);                // turn on pin 13 LED
      IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = IBI;                      
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag

        return;                              // IBI value is unreliable so discard it
      }   


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable    

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value 
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values 
      BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      QS = true;                              // set Quantified Self flag 
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }                       
  }

  if (Signal < thresh && Pulse == true){   // when the values are going down, the beat is over
    digitalWrite(blinkPin,LOW);            // turn off pin 13 LED
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 512;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }





    serialOutput() ;       

  if (QS == true){     // A Heartbeat Was Found
                       // BPM and IBI have been Determined
                       // Quantified Self "QS" true when arduino finds a heartbeat
      //  fadeRate = 255;         // Makes the LED Fade Effect Happen
                                // Set 'fadeRate' Variable to 255 to fade LED with pulse
        serialOutputWhenBeatHappens();   // A Beat Happened, Output that to serial.     
        QS = false;                      // reset the Quantified Self flag for next time    
  }

 // ledFadeToBeat();                      // Makes the LED Fade Effect Happen 
  delay(20);                             //  take a break
}





/*void ledFadeToBeat(){
    fadeRate -= 15;                         //  set LED fade value
    fadeRate = constrain(fadeRate,0,255);   //  keep LED fade value from going into negative numbers!
    //analogWrite(fadePin,fadeRate);          //  fade LED
  }
*/

SerialHandling file:

//////////
/////////  All Serial Handling Code, 
/////////  It's Changeable with the 'serialVisual' variable
/////////  Set it to 'true' or 'false' when it's declared at start of code.  
/////////

void serialOutput(){   // Decide How To Output Serial. 
 if (serialVisual == true){  
     arduinoSerialMonitorVisual('-', Signal);   // goes to function that makes Serial Monitor Visualizer
 } else{
      sendDataToSerial('S', Signal);     // goes to sendDataToSerial function
 }        
}


//  Decides How To OutPut BPM and IBI Data
void serialOutputWhenBeatHappens(){    
 if (serialVisual == true){            //  Code to Make the Serial Monitor Visualizer Work
    Serial.print("*** Heart-Beat Happened *** ");  //ASCII Art Madness
    Serial.print("BPM: ");
    Serial.print(BPM);
    Serial.print("  ");
 } else{
        sendDataToSerial('B',BPM);   // send heart rate with a 'B' prefix
        sendDataToSerial('Q',IBI);   // send time between beats with a 'Q' prefix
 }   
}



//  Sends Data to Pulse Sensor Processing App, Native Mac App, or Third-party Serial Readers. 
void sendDataToSerial(char symbol, int data ){
    Serial.print(symbol);

    Serial.println(data);                
  }


//  Code to Make the Serial Monitor Visualizer Work
void arduinoSerialMonitorVisual(char symbol, int data ){    
  const int sensorMin = 0;      // sensor minimum, discovered through experiment
const int sensorMax = 1024;    // sensor maximum, discovered through experiment

  int sensorReading = data;
  // map the sensor range to a range of 12 options:
  int range = map(sensorReading, sensorMin, sensorMax, 0, 11);

  // do something different depending on the 
  // range value:
  switch (range) {
  case 0:     
    Serial.println("");     /////ASCII Art Madness
    break;
  case 1:   
    Serial.println("---");
    break;
  case 2:    
    Serial.println("------");
    break;
  case 3:    
    Serial.println("---------");
    break;
  case 4:   
    Serial.println("------------");
    break;
  case 5:   
    Serial.println("--------------|-");
    break;
  case 6:   
    Serial.println("--------------|---");
    break;
  case 7:   
    Serial.println("--------------|-------");
    break;
  case 8:  
    Serial.println("--------------|----------");
    break;
  case 9:    
    Serial.println("--------------|----------------");
    break;
  case 10:   
    Serial.println("--------------|-------------------");
    break;
  case 11:   
    Serial.println("--------------|-----------------------");
    break;

  } 
}

Serial monitor only displays these numbers that are constantly changing:

S797
S813
S798
S811
S822
S802
S821
S819
S818
S806
S797
S797
S812
S816
S794
S820
S821
S808
S816
S820
S803
S810
S811
S806
S822
S817
S811
S822
S800
S820
S799
S800
S815
S809
S820
S822
S821
S809
S796
S821
S816
S798
S820

All in all, I was hoping if someone could help me with the code to calculate BPM in a more basic/ easy manner without having to deal with visualization of the BPM.

Sorry for the long post, thanks!


Solution

  • This is how i did it, to overpass the absence of interrupt on my board:

    #define pulsePin A0
    
    //  VARIABLES
    int rate[10];                    
    unsigned long sampleCounter = 0; 
    unsigned long lastBeatTime = 0;  
    unsigned long lastTime = 0, N;
    int BPM = 0;
    int IBI = 0;
    int P = 512;
    int T = 512;
    int thresh = 512;  
    int amp = 100;                   
    int Signal;
    boolean Pulse = false;
    boolean firstBeat = true;          
    boolean secondBeat = true;
    boolean QS = false;    
    
    void setup() {
      Serial.begin(9600);
    
    }
    
    void loop() {
    
                  if (QS == true) {
                    Serial.println("BPM: "+ String(BPM));
                    QS = false;
                  } else if (millis() >= (lastTime + 2)) {
                    readPulse(); 
                    lastTime = millis();
                  }     
    }
    
    
    
    void readPulse() {
    
      Signal = analogRead(pulsePin);              
      sampleCounter += 2;                           
      int N = sampleCounter - lastBeatTime;   
    
      detectSetHighLow();
    
      if (N > 250) {  
        if ( (Signal > thresh) && (Pulse == false) && (N > (IBI / 5) * 3) )
          pulseDetected();
      }
    
      if (Signal < thresh && Pulse == true) {  
        Pulse = false;
        amp = P - T;
        thresh = amp / 2 + T;  
        P = thresh;
        T = thresh;
      }
    
      if (N > 2500) {
        thresh = 512;
        P = 512;
        T = 512;
        lastBeatTime = sampleCounter;
        firstBeat = true;            
        secondBeat = true;           
      }
    
    }
    
    void detectSetHighLow() {
    
      if (Signal < thresh && N > (IBI / 5) * 3) {
        if (Signal < T) {                       
          T = Signal;                         
        }
      }
    
      if (Signal > thresh && Signal > P) {    
        P = Signal;                           
      }                                       
    
    }
    
    void pulseDetected() {
      Pulse = true;                           
      IBI = sampleCounter - lastBeatTime;     
      lastBeatTime = sampleCounter;           
    
      if (firstBeat) {                       
        firstBeat = false;                 
        return;                            
      }
      if (secondBeat) {                    
        secondBeat = false;                
        for (int i = 0; i <= 9; i++) {   
          rate[i] = IBI;
        }
      }
    
      word runningTotal = 0;                   
    
      for (int i = 0; i <= 8; i++) {          
        rate[i] = rate[i + 1];            
        runningTotal += rate[i];          
      }
    
      rate[9] = IBI;                      
      runningTotal += rate[9];            
      runningTotal /= 10;                 
      BPM = 60000 / runningTotal;         
      QS = true;                              
    }