I have to calculate cosine similarity (patient similarity metric) in R between 48k patients data with some predictive variables. Here is the equation: PSM(P1,P2) = P1.P2/ ||P1|| ||P2||
where P1 and P2 are the predictor vectors corresponding to two different patients, where for example P1 index patient and P2 will be compared with index (P1) and finally pairwise patient similarity metric PSM(P1,P2) will be calculated.
This process will go on for all 48k patients.
I have added sample data-set for 300 patients in a .csv file. Please find the sample data-set here.https://1drv.ms/u/s!AhoddsPPvdj3hVTSbosv2KcPIx5a
First things first: You can find more rigorous treatments of cosine similarity at either of these posts:
Now, you clearly have a mixture of data types in your input, at least
I suspect that some of the integer values are Booleans or additional categoricals. Generally, it will be up to you to transform these into continuous numerical vectors if you want to use them as input into the similarity calculation. For example, what's the distance between admission types ELECTIVE
and EMERGENCY
? Is it a nominal or ordinal variable? I will only be modelling the columns that I trust to be numerical dependent variables.
Also, what have you done to ensure that some of your columns don't correlate with others? Using just a little awareness of data science and biomedical terminology, it seems likely that the following are all correlated:
diasbp_max
,diasbp_min
,meanbp_max
,meanbp_min
,sysbp_max
andsysbp_min
I suggest going to a print shop and ordering a poster-size printout of psm_pairs.pdf
. :-) Your eyes are better at detecting meaningful (but non-linear) dependencies between variable. Including multiple measurements of the same fundamental phenomenon may over-weight that phenomenon in your similarity calculation. Don't forget that you can derive variables like
diasbp_rage <- diasbp_max - diasbp_min
Now, I'm not especially good at linear algebra, so I'm importing a cosine similarity function form the lsa
text analysis package. I'd love to see you write out the formula in your question as an R function. I would write it to compare one row to another, and use two nested apply loops to get all comparisons. Hopefully we'll get the same results!
After calculating the similarity, I try to find two different patients with the most dissimilar encounters.
Since you're working with a number of rows that's relatively large, you'll want to compare various algorithmic methodologies for efficiency. In addition, you could use SparkR/some other Hadoop solution on a cluster, or the parallel package on a single computer with multiple cores and lots of RAM. I have no idea whether the solution I provided is thread-safe.
Come to think of it, the transposition alone (as I implemented it) is likely to be computationally costly for a set of 1 million patient-encounters. Overall, (If I remember my computational complexity correctly) as the number of rows in your input increases, the performance could degrade exponentially.
library(lsa)
library(reshape2)
psm_sample <- read.csv("psm_sample.csv")
row.names(psm_sample) <-
make.names(paste0("patid.", as.character(psm_sample$subject_id)), unique = TRUE)
temp <- sapply(psm_sample, class)
temp <- cbind.data.frame(names(temp), as.character(temp))
names(temp) <- c("variable", "possible.type")
numeric.cols <- (temp$possible.type %in% c("factor", "integer") &
(!(grepl(
pattern = "_id$", x = temp$variable
))) &
(!(
grepl(pattern = "_code$", x = temp$variable)
)) &
(!(
grepl(pattern = "_type$", x = temp$variable)
))) | temp$possible.type == "numeric"
psm_numerics <- psm_sample[, numeric.cols]
row.names(psm_numerics) <- row.names(psm_sample)
psm_numerics$gender <- as.integer(psm_numerics$gender)
psm_scaled <- scale(psm_numerics)
pair.these.up <- psm_scaled
# checking for independence of variables
# if the following PDF pair plot is too big for your computer to open,
# try pair-plotting some random subset of columns
# keep.frac <- 0.5
# keep.flag <- runif(ncol(psm_scaled)) < keep.frac
# pair.these.up <- psm_scaled[, keep.flag]
# pdf device sizes are in inches
dev <-
pdf(
file = "psm_pairs.pdf",
width = 50,
height = 50,
paper = "special"
)
pairs(pair.these.up)
dev.off()
#transpose the dataframe to get the
#similarity between patients
cs <- lsa::cosine(t(psm_scaled))
# this is super inefficnet, because cs contains
# two identical triangular matrices
cs.melt <- melt(cs)
cs.melt <- as.data.frame(cs.melt)
names(cs.melt) <- c("enc.A", "enc.B", "similarity")
extract.pat <- function(enc.col) {
my.patients <-
sapply(enc.col, function(one.pat) {
temp <- (strsplit(as.character(one.pat), ".", fixed = TRUE))
return(temp[[1]][[2]])
})
return(my.patients)
}
cs.melt$pat.A <- extract.pat(cs.melt$enc.A)
cs.melt$pat.B <- extract.pat(cs.melt$enc.B)
same.pat <- cs.melt[cs.melt$pat.A == cs.melt$pat.B ,]
different.pat <- cs.melt[cs.melt$pat.A != cs.melt$pat.B ,]
most.dissimilar <-
different.pat[which.min(different.pat$similarity),]
dissimilar.pat.frame <- rbind(psm_numerics[rownames(psm_numerics) ==
as.character(most.dissimilar$enc.A) ,],
psm_numerics[rownames(psm_numerics) ==
as.character(most.dissimilar$enc.B) ,])
print(t(dissimilar.pat.frame))
which gives
patid.68.49 patid.9
gender 1.00000 2.00000
age 41.85000 41.79000
sysbp_min 72.00000 106.00000
sysbp_max 95.00000 217.00000
diasbp_min 42.00000 53.00000
diasbp_max 61.00000 107.00000
meanbp_min 52.00000 67.00000
meanbp_max 72.00000 132.00000
resprate_min 20.00000 14.00000
resprate_max 35.00000 19.00000
tempc_min 36.00000 35.50000
tempc_max 37.55555 37.88889
spo2_min 90.00000 95.00000
spo2_max 100.00000 100.00000
bicarbonate_min 22.00000 26.00000
bicarbonate_max 22.00000 30.00000
creatinine_min 2.50000 1.20000
creatinine_max 2.50000 1.40000
glucose_min 82.00000 129.00000
glucose_max 82.00000 178.00000
hematocrit_min 28.10000 37.40000
hematocrit_max 28.10000 45.20000
potassium_min 5.50000 2.80000
potassium_max 5.50000 3.00000
sodium_min 138.00000 136.00000
sodium_max 138.00000 140.00000
bun_min 28.00000 16.00000
bun_max 28.00000 17.00000
wbc_min 2.50000 7.50000
wbc_max 2.50000 13.70000
mingcs 15.00000 15.00000
gcsmotor 6.00000 5.00000
gcsverbal 5.00000 0.00000
gcseyes 4.00000 1.00000
endotrachflag 0.00000 1.00000
urineoutput 1674.00000 887.00000
vasopressor 0.00000 0.00000
vent 0.00000 1.00000
los_hospital 19.09310 4.88130
los_icu 3.53680 5.32310
sofa 3.00000 5.00000
saps 17.00000 18.00000
posthospmort30day 1.00000 0.00000