I need to find all the lattice points inside and on a polygon.
Input:
from shapely.geometry import Polygon, mapping
sh_polygon = Polygon(((0,0), (2,0), (2,2), (0,2)))
Output:
(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)
Please suggest if there is a way to get the expected result with or without using Shapely.
I have written this piece of code that gives points inside the polygon, but it doesn't give points on it. Also is there a better way to do the same thing:
from shapely.geometry import Polygon, Point
def get_random_point_in_polygon(poly):
(minx, miny, maxx, maxy) = poly.bounds
minx = int(minx)
miny = int(miny)
maxx = int(maxx)
maxy = int(maxy)
print("poly.bounds:", poly.bounds)
a = []
for x in range(minx, maxx+1):
for y in range(miny, maxy+1):
p = Point(x, y)
if poly.contains(p):
a.append([x, y])
return a
p = Polygon([(0,0), (2,0), (2,2), (0,2)])
point_in_poly = get_random_point_in_polygon(p)
print(len(point_in_poly))
print(point_in_poly)
Output:
poly.bounds: (0.0, 0.0, 2.0, 2.0)
1
[[1, 1]]
I have simplified my problem. Actually, I need to find all points inside and on a square with corners: (77,97), (141,101), (136,165), (73,160).
Is there not a function that will find lattice points that lie on a line? Those are the only ones you're missing. They are simply solutions to the line segment's defining equation. If not, it's easy enough to write the algorithm yourself, finding the points by brute force.
Do the following for each edge (p1, p2) of the polygon.
p1 = (x1, y1)
p2 = (x2, y2)
xdiff = x2 - x1
ydiff = y2 - y1
# Find the line's equation, y = mx + b
m = ydiff / xdiff
b = y1 - m*x1
for xval in range(x1+1, x2):
yval = m * xval + b
if int(yval) == yval:
# add (xval, yval) to your list of points
I've left details up to you: make sure that x1 < x2 (or adapt otherwise), handle a vertical segment, etc. This isn't particularly elegant, but it's fast, easy to implement, and easy to debug.