we have an use case where we need to join all column values in a row by removing duplicates.Data is stored in a data frame of panda. For eg consider below data frame df with columns A,B,C
A B C
X1 AX X1
X2 X2 X1
X3 X3 X3
X4 XX XX
I would like to add a new column which concatenates A to B to C and remove duplicates if any found by preserving the order. The output would be like
A B C Newcol
X1 AX X1 X1_AX
X2 X2 X1 X2_X1
X3 X3 X3 X3
X4 XX XX X4_XX
Note that the number of columns are dynamic. As of now I am doing it by using the command
df.apply(lambda x: '-'.join(x.dropna().astype(str).drop_duplicates()),axis=1)
But this is very slow and takes around 150 seconds for my data. But since 90% of the data frame are usually with only 2 columns , I put an if statement in my code and run the below command for cases with 2 columns
t1=pd.Series(np.where(df.iloc[:,0].dropna().astype(str) != df.iloc[:,1].dropna().astype(str), df.iloc[:,0].dropna().astype(str)+"-"+df.iloc[:,1].dropna().astype(str),df.iloc[:,1].dropna().astype(str)))
which takes around 55.3 milli seconds
or even
t1=df.iloc[:,0].dropna().astype(str).where(df.iloc[:,0].dropna().astype(str) == df.iloc[:,1].dropna().astype(str), df.iloc[:,0].dropna().astype(str)+"-"+df.iloc[:,1].dropna().astype(str))
both consumes almost same time ( 55 ms opposed to 150 seconds ), but issue is that it is applicable only for 2 columns. I would like to create a generalised statement , so that it can handle n number of columns. I tried using reduce on top ,but it gave error while i tried for 3 columns.
reduce((lambda x,y:pd.Series(np.where(df.iloc[:,x].dropna().astype(str) != df.iloc[:,y].dropna().astype(str), df.iloc[:,x].dropna().astype(str)+"-"+df.iloc[:,y].dropna().astype(str),df.iloc[:,y].dropna().astype(str)))),list(range(df.shape[1])))
TypeError: '>=' not supported between instances of 'str' and 'int'
Please note that the df is actually a chunk of a multicore parallel task. So it would be great if the suggestions excludes parallelism.
Try
df['new'] = df.astype('str').apply(lambda x: '_'.join(set(x)), axis = 1)
A B C new
0 X1 AX X1 AX_X1
1 X2 X2 X1 X1_X2
2 X3 X3 X3 X3
3 X4 XX XX X4_XX
EDIT: Maintain the order of the column values
def my_append(x):
l = []
for elm in x:
if elm not in l:
l.append(elm)
return '_'.join(l)
df['New col']=df.astype('str').apply(my_append, axis = 1)
1000 loops, best of 3: 871 µs per loop
Returns
A B C New col
0 X1 AX X1 X1_AX
1 X2 X2 X1 X2_X1
2 X3 X3 X3 X3
3 X4 XX XX X4_XX
EDIT 1: In case you have nan in any column like this
A B C
0 X1 AX X1
1 X2 X2 X1
2 X3 X3 X3
3 NaN XX XX
Handle that in the function and then apply
def my_append(x):
l = []
for elm in x:
if elm not in l:
l.append(elm)
l = [x for x in l if str(x) != 'nan']
return '_'.join(l)
df['New col']=df.astype('str').apply(my_append, axis = 1)
A B C New col
0 X1 AX X1 X1_AX
1 X2 X2 X1 X2_X1
2 X3 X3 X3 X3
3 NaN XX XX XX