I have a list of lists with exponential numbers as follows:
[[ 1.92043482e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 2.41005634e-03 0.00000000e+00
7.19330120e-04 0.00000000e+00 0.00000000e+00 1.42886875e-04
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 9.79279411e-05 7.88888657e-04 0.00000000e+00
0.00000000e+00 1.40425916e-01 0.00000000e+00 1.13955893e-02
7.36868947e-03 3.67091988e-04 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.72037105e-03 1.72377961e-03
0.00000000e+00 0.00000000e+00 1.19532061e-01 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 3.37249481e-04
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.75111492e-03 0.00000000e+00
0.00000000e+00 1.12639313e-02]
[ 0.00000000e+00 0.00000000e+00 1.10271735e-04 5.98736562e-04
6.77961628e-04 7.49569659e-04 0.00000000e+00 0.00000000e+00
2.91697850e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 3.30257021e-04 2.46629275e-04
0.00000000e+00 1.87586441e-02 6.49103144e-04 0.00000000e+00
1.19046355e-04 0.00000000e+00 0.00000000e+00 2.69499898e-03
1.48525386e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 1.18803119e-03
3.93100829e-04 0.00000000e+00 3.76245304e-04 2.79537738e-02
0.00000000e+00 1.20738457e-03 9.74669064e-06 7.18680093e-04
1.61546793e-02 3.49360861e-04 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00]]
How do I find the largest number within each list in python?
Based on the formatting in the question, it looks like you have a numpy array. If that is the case, you'll do best to use builtin numpy operations. In this case, probably arr.max(axis=1)
. e.g.:
>>> a = np.arange(4, dtype=float).reshape(2, 2)
>>> a
array([[ 0., 1.],
[ 2., 3.]])
>>> a.max(axis=1)
array([ 1., 3.])
This will be faster than using python's max
function (iteration can happen directly on the numpy array data rather than having to go through ndarray.__iter__
) and as another bonus, the output will still be a numpy array which you can then use for other calculations, etc.