Search code examples
algorithmrandomti-basic

Finding the Seed of the rand() Function TI-84 Programming


I've done a lot of research on that TI-84 rand() function. It uses the L'Ecuyer's algorithm to generate pseudorandom numbers. I have an interesting case however.

If the rand() function is given the proper seed, it will always generate the same numbers. So, given the first random number that the rand() function generates, is it possible to find the seed of the function?

Let the variable X represent the unknown seed.

    X->rand
    rand->D
    Disp D

Output:

    0.114820491

Based off this information, is it possible to calculate the seed of the rand() function? Can you work backwards somehow from the TI-84's rand() algorithm?


Solution

  • No, empirically it is not possible to calculate the seed based on just the first generated random number because it is not unique. The following code will do a brute force search for a seed given the first random number:

    #include <stdio.h>
    #include <stdint.h>
    #include <math.h>
    #include <stdlib.h>
    
    int64_t mod1  = 2147483563;
    int64_t mod2  = 2147483399;
    int64_t mult1 = 40014;
    int64_t mult2 = 40692;
    int64_t seed1,seed2;
    
    void Seed(int64_t n){
      if(n<0) //Perform an abs
        n = -n;
      if(n==0){
        seed1 = 12345; //Gotta love these seed values!
        seed2 = 67890;
      } else {
        seed1 = (mult1*n)%mod1;
        seed2 = n%mod2;
      }
    }
    
    double Generate(){
      double result;
      seed1  = (seed1*mult1)%mod1;
      seed2  = (seed2*mult2)%mod2;
      result = (double)(seed1-seed2)/(double)mod1;
      if(result<0)
        result = result+1;
      return result;
    }
    
    int main(int argc, char **argv){
      double x = 0.114820491; // Mattkx4's value
      double r;
      int64_t n;
      int i;
    
      if (argc > 2) {
        printf("USAGE: %s <1st generated random number>\n", argv[0]);
        return 1;
      } else if (argc == 2) {
        x = atof(argv[1]);
        printf("[Looking for seed generating %.10f]\n", x);
      } else {
        printf("[Looking for seed generating default value of %.10f]\n", x);
      }
    
      for (n=0; n<= 2147483647; n++) {
        Seed(n);
        r = Generate();
        if (fabs(r-x) < 10e-10) {
          printf("HIT: seed is %ld; G()=%.10f, G()-x=%.12f\n", (long) n, r, r-x);
          for (i=0; i<5; i++) {
            printf("  G() = %.10f\n", Generate());
          }
        }
      }
    
      return 0;
    }
    

    In the case of the OPs first random number, it gives the following output:

    $ time ./a.out
    [Looking for seed generating default value of 0.1148204910]
    HIT: seed is 41817; G()=0.1148204909, G()-x=-0.000000000055
      G() = 0.1928098124
      G() = 0.8785866698
      G() = 0.7541802051
      G() = 0.3236799652
      G() = 0.2698472063
    HIT: seed is 196206349; G()=0.1148204909, G()-x=-0.000000000055
      G() = 0.7255189385
      G() = 0.3079613984
      G() = 0.8041985209
      G() = 0.0959226401
      G() = 0.7729820570
    HIT: seed is 392370881; G()=0.1148204909, G()-x=-0.000000000055
      G() = 0.2582281409
      G() = 0.7373361269
      G() = 0.8542168367
      G() = 0.8681653150
      G() = 0.2761169842
    HIT: seed is 588535413; G()=0.1148204909, G()-x=-0.000000000055
      G() = 0.7909372669
      G() = 0.1667108555
      G() = 0.9042350761
      G() = 0.6404079899
      G() = 0.7792519113
    HIT: seed is 1869313916; G()=0.1148204919, G()-x=0.000000000876
      G() = 0.9421831845
      G() = 0.2660259263
      G() = 0.9001868100
      G() = 0.3563914254
      G() = 0.3884731955
    HIT: seed is 2065478448; G()=0.1148204919, G()-x=0.000000000876
      G() = 0.4748923105
      G() = 0.6954006549
      G() = 0.9502050494
      G() = 0.1286341003
      G() = 0.8916080463
    
    real    1m24.132s
    user    1m24.179s
    sys 0m0.000s
    

    In answering this, I am standing on the shoulders of giants by using the code provided by @richard in an answer to this stackoverflow question. If there is a better way to provide attribution, please let me know or simply edit this answer.