Search code examples
pythongraph-theorynetworkx

All possible maximum matchings of a bipartite graph


I am using networkx to find the maximum cardinality matching of a bipartite graph.

The matched edges are not unique for the particular graph.

Is there a way for me to find all the maximum matchings?

For the following example, all edges below can be the maximum matching:

{1: 2, 2: 1} or {1: 3, 3: 1} or {1: 4, 4: 1}

import networkx as nx
import matplotlib.pyplot as plt

G = nx.MultiDiGraph()
edges = [(1,3), (1,4), (1,2)]

nx.is_bipartite(G)
True

nx.draw(G, with_labels=True)
plt.show()

bipartite graph

Unfortunately,

nx.bipartite.maximum_matching(G)

only returns

{1: 2, 2: 1}

Is there a way I can get the other combinations as well?


Solution

  • I'v read Uno's work and tried to come up with an implementation. Below is my very lengthy code with a working example. In this particular case there are 4 "feasible" vertices (according to Uno's terminology), so switching each with an already covered vertex, you have all together 2^4 = 16 different possible maximum matchings.

    I've to admit that I'm very new to graph theory and I wasn't following Uno's processes exactly, there are minor differences and mostly I didn't attempt to do any optimizations. I did struggle in understanding the paper as I think the explanations are not quite perfect and the figures may have errors in them. So please do use with care and if you can help optimize it that will be real great!

    import networkx as nx
    from networkx import bipartite
    
    def plotGraph(graph):
        import matplotlib.pyplot as plt
        fig=plt.figure()
        ax=fig.add_subplot(111)
    
        pos=[(ii[1],ii[0]) for ii in graph.nodes()]
        pos_dict=dict(zip(graph.nodes(),pos))
        nx.draw(graph,pos=pos_dict,ax=ax,with_labels=True)
        plt.show(block=False)
        return
    
    
    def formDirected(g,match):
        '''Form directed graph D from G and matching M.
    
        <g>: undirected bipartite graph. Nodes are separated by their
             'bipartite' attribute.
        <match>: list of edges forming a matching of <g>. 
    
        Return <d>: directed graph, with edges in <match> pointing from set-0
                    (bipartite attribute ==0) to set-1 (bipartite attrbiute==1),
                    and the other edges in <g> but not in <matching> pointing
                    from set-1 to set-0.
        '''
    
        d=nx.DiGraph()
    
        for ee in g.edges():
            if ee in match or (ee[1],ee[0]) in match:
                if g.node[ee[0]]['bipartite']==0:
                    d.add_edge(ee[0],ee[1])
                else:
                    d.add_edge(ee[1],ee[0])
            else:
                if g.node[ee[0]]['bipartite']==0:
                    d.add_edge(ee[1],ee[0])
                else:
                    d.add_edge(ee[0],ee[1])
    
        return d
    
    
    def enumMaximumMatching(g):
        '''Find all maximum matchings in an undirected bipartite graph.
    
        <g>: undirected bipartite graph. Nodes are separated by their
             'bipartite' attribute.
    
        Return <all_matches>: list, each is a list of edges forming a maximum
                              matching of <g>. 
        '''
    
        all_matches=[]
    
        #----------------Find one matching M----------------
        match=bipartite.hopcroft_karp_matching(g)
    
        #---------------Re-orient match arcs---------------
        match2=[]
        for kk,vv in match.items():
            if g.node[kk]['bipartite']==0:
                match2.append((kk,vv))
        match=match2
        all_matches.append(match)
    
        #-----------------Enter recursion-----------------
        all_matches=enumMaximumMatchingIter(g,match,all_matches,None)
    
        return all_matches
    
    
    def enumMaximumMatchingIter(g,match,all_matches,add_e=None):
        '''Recurively search maximum matchings.
    
        <g>: undirected bipartite graph. Nodes are separated by their
             'bipartite' attribute.
        <match>: list of edges forming one maximum matching of <g>.
        <all_matches>: list, each is a list of edges forming a maximum
                       matching of <g>. Newly found matchings will be appended
                       into this list.
        <add_e>: tuple, the edge used to form subproblems. If not None,
                 will be added to each newly found matchings.
    
        Return <all_matches>: updated list of all maximum matchings.
        '''
    
        #---------------Form directed graph D---------------
        d=formDirected(g,match)
    
        #-----------------Find cycles in D-----------------
        cycles=list(nx.simple_cycles(d))
    
        if len(cycles)==0:
    
            #---------If no cycle, find a feasible path---------
            all_uncovered=set(g.node).difference(set([ii[0] for ii in match]))
            all_uncovered=all_uncovered.difference(set([ii[1] for ii in match]))
            all_uncovered=list(all_uncovered)
    
            #--------------If no path, terminiate--------------
            if len(all_uncovered)==0:
                return all_matches
    
            #----------Find a length 2 feasible path----------
            idx=0
            uncovered=all_uncovered[idx]
            while True:
    
                if uncovered not in nx.isolates(g):
                    paths=nx.single_source_shortest_path(d,uncovered,cutoff=2)
                    len2paths=[vv for kk,vv in paths.items() if len(vv)==3]
    
                    if len(len2paths)>0:
                        reversed=False
                        break
    
                    #----------------Try reversed path----------------
                    paths_rev=nx.single_source_shortest_path(d.reverse(),uncovered,cutoff=2)
                    len2paths=[vv for kk,vv in paths_rev.items() if len(vv)==3]
    
                    if len(len2paths)>0:
                        reversed=True
                        break
    
                idx+=1
                if idx>len(all_uncovered)-1:
                    return all_matches
    
                uncovered=all_uncovered[idx]
    
            #-------------Create a new matching M'-------------
            len2path=len2paths[0]
            if reversed:
                len2path=len2path[::-1]
            len2path=zip(len2path[:-1],len2path[1:])
    
            new_match=[]
            for ee in d.edges():
                if ee in len2path:
                    if g.node[ee[1]]['bipartite']==0:
                        new_match.append((ee[1],ee[0]))
                else:
                    if g.node[ee[0]]['bipartite']==0:
                        new_match.append(ee)
    
            if add_e is not None:
                for ii in add_e:
                    new_match.append(ii)
    
            all_matches.append(new_match)
    
            #---------------------Select e---------------------
            e=set(len2path).difference(set(match))
            e=list(e)[0]
    
            #-----------------Form subproblems-----------------
            g_plus=g.copy()
            g_minus=g.copy()
            g_plus.remove_node(e[0])
            g_plus.remove_node(e[1])
    
            g_minus.remove_edge(e[0],e[1])
    
            add_e_new=[e,]
            if add_e is not None:
                add_e_new.extend(add_e)
    
            all_matches=enumMaximumMatchingIter(g_minus,match,all_matches,add_e)
            all_matches=enumMaximumMatchingIter(g_plus,new_match,all_matches,add_e_new)
    
        else:
            #----------------Find a cycle in D----------------
            cycle=cycles[0]
            cycle.append(cycle[0])
            cycle=zip(cycle[:-1],cycle[1:])
    
            #-------------Create a new matching M'-------------
            new_match=[]
            for ee in d.edges():
                if ee in cycle:
                    if g.node[ee[1]]['bipartite']==0:
                        new_match.append((ee[1],ee[0]))
                else:
                    if g.node[ee[0]]['bipartite']==0:
                        new_match.append(ee)
    
            if add_e is not None:
                for ii in add_e:
                    new_match.append(ii)
    
            all_matches.append(new_match)
    
            #-----------------Choose an edge E-----------------
            e=set(match).intersection(set(cycle))
            e=list(e)[0]
    
            #-----------------Form subproblems-----------------
            g_plus=g.copy()
            g_minus=g.copy()
            g_plus.remove_node(e[0])
            g_plus.remove_node(e[1])
            g_minus.remove_edge(e[0],e[1])
    
            add_e_new=[e,]
            if add_e is not None:
                add_e_new.extend(add_e)
    
            all_matches=enumMaximumMatchingIter(g_plus,match,all_matches,add_e_new)
            all_matches=enumMaximumMatchingIter(g_minus,new_match,all_matches,add_e)
    
        return all_matches
    
    if __name__=='__main__':
        g=nx.Graph()
        edges=[
                [(1,0), (0,0)],
                [(1,1), (0,0)],
                [(1,2), (0,2)],
                [(1,3), (0,2)],
                [(1,4), (0,3)],
                [(1,4), (0,5)],
                [(1,5), (0,2)],
                [(1,5), (0,4)],
                [(1,6), (0,1)],
                [(1,6), (0,4)],
                [(1,6), (0,6)]
                ]
    
        for ii in edges:
            g.add_node(ii[0],bipartite=0)
            g.add_node(ii[1],bipartite=1)
    
        g.add_edges_from(edges)
        plotGraph(g)
    
        all_matches=enumMaximumMatching(g)
    
        for mm in all_matches:
            g_match=nx.Graph()
            for ii in mm:
                g_match.add_edge(ii[0],ii[1])
            plotGraph(g_match)