I have a set of coordinate means (3D) and a set of standard deviations (3D) accompying them like this:
means = [[x1, y1, z1],
[x2, y2, z2],
...
[xn, yn, zn]]
stds = [[sx1, sy1, sz1],
[sx2, sy2, sz2],
...
[sxn, syn, szn]]
so the problem is N x 3
I am looking to generate 1000 coordinate sample sets (N x 3 x 1000) randomly using np.random.normal(). Currently I generate the samples using a for loop:
for i in range(0,1000):
samples = np.random.normal(means, stds)
But I have the feeling I can lose the for loop and let numpy do it faster and in one call, anybody know how I should code that?
or alternatively use the size
argument:
import numpy as np
means = [ [0, 0, 0], [1, 1, 1] ]
std = [ [1, 1, 1], [1, 1, 1] ]
#100 samples
print(np.random.normal(means, std, size = (100, len(means), 3)))