I working on a PMI problem, so far I have a dataframe like this:
w = ['by', 'step', 'by', 'the', 'is', 'step', 'is', 'by', 'is']
c = ['step', 'what', 'is', 'what', 'the', 'the', 'step', 'the', 'what']
ppmi = [1, 3, 12, 3, 123, 1, 321, 1, 23]
df = pd.DataFrame({'w':w, 'c':c, 'ppmi': ppmi})
I want to convert this dataframe into a sparse matrix. Since w
and c
are lists of strings, if I do csr_matrix((ppmi, (w, c)))
, it will give me an error TypeError: cannot perform reduce with flexible type
. What is another way to convert this dataframe?
Maybe you could try with coo_matrix
:
import pandas as pd
import scipy.sparse as sps
w = ['by', 'step', 'by', 'the', 'is', 'step', 'is', 'by', 'is']
c = ['step', 'what', 'is', 'what', 'the', 'the', 'step', 'the', 'what']
ppmi = [1, 3, 12, 3, 123, 1, 321, 1, 23]
df = pd.DataFrame({'w':w, 'c':c, 'ppmi': ppmi})
df.set_index(['w', 'c'], inplace=True)
mat = sps.coo_matrix((df['ppmi'],(df.index.labels[0], df.index.labels[1])))
print(mat.todense())
output:
[[ 12 1 1 0]
[ 0 321 123 23]
[ 0 0 1 3]
[ 0 0 0 3]]