Search code examples
deep-learningkerasfeature-selectionactivation

Visualizing features and activations in CNN using Keras example


I'm following the keras blog post code to visualize the features learned and activations at different layers. The code has randomly generated a gray-image of dimension (1,3,img_width, img_height) and visualized it. here it is:

from __future__ import print_function

from scipy.misc import imsave
import numpy as np
import time
from keras.applications import vgg16
from keras import backend as K

# dimensions of the generated pictures for each filter.
img_width = 128
img_height = 128

# the name of the layer we want to visualize
# (see model definition at keras/applications/vgg16.py)
layer_name = 'block5_conv1'

# util function to convert a tensor into a valid image


def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + 1e-5)
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x *= 255
    if K.image_data_format() == 'channels_first':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# build the VGG16 network with ImageNet weights
model = vgg16.VGG16(weights='imagenet', include_top=False)
print('Model loaded.')

model.summary()

# this is the placeholder for the input images
input_img = model.input

# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])


def normalize(x):
    # utility function to normalize a tensor by its L2 norm
    return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)


kept_filters = []
for filter_index in range(0, 200):
    # we only scan through the first 200 filters,
    # but there are actually 512 of them
    print('Processing filter %d' % filter_index)
    start_time = time.time()

    # we build a loss function that maximizes the activation
    # of the nth filter of the layer considered
    layer_output = layer_dict[layer_name].output
    if K.image_data_format() == 'channels_first':
        loss = K.mean(layer_output[:, filter_index, :, :])
    else:
        loss = K.mean(layer_output[:, :, :, filter_index])

    # we compute the gradient of the input picture wrt this loss
    grads = K.gradients(loss, input_img)[0]

    # normalization trick: we normalize the gradient
    grads = normalize(grads)

    # this function returns the loss and grads given the input picture
    iterate = K.function([input_img], [loss, grads])

    # step size for gradient ascent
    step = 1.

    # we start from a gray image with some random noise
    if K.image_data_format() == 'channels_first':
        input_img_data = np.random.random((1, 3, img_width, img_height))
    else:
        input_img_data = np.random.random((1, img_width, img_height, 3))
    input_img_data = (input_img_data - 0.5) * 20 + 128

    # we run gradient ascent for 20 steps
    for i in range(20):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step

        print('Current loss value:', loss_value)
        if loss_value <= 0.:
            # some filters get stuck to 0, we can skip them
            break

    # decode the resulting input image
    if loss_value > 0:
        img = deprocess_image(input_img_data[0])
        kept_filters.append((img, loss_value))
    end_time = time.time()
    print('Filter %d processed in %ds' % (filter_index, end_time - start_time))

# we will stich the best 64 filters on a 8 x 8 grid.
n = 8

# the filters that have the highest loss are assumed to be better-looking.
# we will only keep the top 64 filters.
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]

# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
margin = 5
width = n * img_width + (n - 1) * margin
height = n * img_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))

# fill the picture with our saved filters
for i in range(n):
    for j in range(n):
        img, loss = kept_filters[i * n + j]
        stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
                         (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img

# save the result to disk
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)

Could you please let me know how can I modify these statements in the code:

input_img_data = np.random.random((1, img_width, img_height, 3))
        input_img_data = (input_img_data - 0.5) * 20 + 128

to insert my own data and visualize the features learned and activations? My image is a RGB image of dimensions 150, 150. thanks for your assistance.


Solution

  • If you want to process single image:

    from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
    
    img = load_img('data/XXXX.jpg')  # this is a PIL image
    x = img_to_array(img) 
    x = x.reshape((1,) + x.shape)
    

    If you want to process batch:

    from keras.preprocessing.image import ImageDataGenerator
    data_gen_args = dict(featurewise_center=True,
                     featurewise_std_normalization=True,
                     rotation_range=90.,
                     width_shift_range=0.1,
                     height_shift_range=0.1,
                     zoom_range=0.2)
    image_datagen = ImageDataGenerator(**data_gen_args)
    
    
    image_generator = image_datagen.flow_from_directory(
        'data/images',
        class_mode=None,
        seed=seed)
    

    To see documentation : https://keras.io/preprocessing/image/#imagedatagenerator

    Update

    # we start from a gray image with some random noise
    if K.image_data_format() == 'channels_first':
        img = load_img('images/1/1.png')  # this is a PIL image
        x = img_to_array(img)
        x = x.reshape((1,) + x.shape)
    else:
        #input_img_data = np.random.random((1, img_width, img_height, 3))
        img = load_img('images/1/1.png')  # this is a PIL image
        x = img_to_array(img)
        x = x.reshape((1,) + x.shape)
    input_img_data = x
    input_img_data = (input_img_data - 0.5) * 20 + 128