I am looking for a sensible way of determining the similarity between project team members who have all been scored on four dimensions.
A data excerpt has been added here below and a slightly larger example is added at the end of the question in dput
pnum invid dom_st prim_st pat_st net_st
1: 7265873 24104 0 1 1 0
2: 7266757 38775 1 2 2 3
3: 7266757 38776 1 2 2 3
4: 7268524 34281 1 3 2 2
5: 7268524 34282 1 3 2 2
6: 7272620 20002 0 1 2 0
7: 7272620 22284 0 1 2 0
8: 7273253 31921 1 1 1 4
9: 7273253 31922 1 1 1 4
10: 7283628 26841 1 1 1 2
11: 7283628 26843 1 1 1 2
12: 7289442 17763 2 11 48 10
13: 7289442 17764 2 11 63 9
14: 7289525 38087 0 1 1 0
15: 7289525 38088 0 2 1 0
16: 7289525 38089 0 3 1 1
The goal is to create a similarity measure for each 'pnum' that compares the four last column values across all 'invid'. The number of 'invid' per 'pnum' varies between 2 and 26.
EDIT 1: Concretely, for 'pnum' 7266757 (row 2 and 3) I want to similarity between th vector for invid 38775 (1,2,2,3) and invid 38776 (1,2,2,3) so this one should give a result of 1. For 'pnum' 7289525 (rows 14-16), I want the similarity between the three row-vectors (0,1,1,0), (0,2,1,0), and (0,3,1,1). This gives the below:
simil(matrix(c(0,1,1,0,0,2,1,0,0,3,1,1), nrow = 3, byrow = TRUE), method = "cosine")
1 2
2 0.9486833
3 0.8528029 0.9438798
In a final step (could be a separate formula), I would like "to reduce" that matrix (for teams of n > 2) to a single value that ideally would be constrained between 0 and 1. A simple way of doing so would be to just take the mean of the matrix result but perhaps there is a smarter way?
I tried the following (with data stored in data.table 'dt' but that gave the below error:
library('proxy')
sim <- dt[, simil(dt, method="cosine"), by = pnum]
Error in .Call("R_cosine", c(4262069, 4262069, 4262069, 4273567, 4273567, : negative length vectors are not allowed
Any suggestion to more successfully apply this or a similar function to a data.table and creative ideas for how to reduce a similarity matrix to a single point value would be very welcome.
The total dataset is about 150,000 rows with about 92,000 projects 'pnum'.
structure(list(pnum = c(7265873, 7266757, 7266757, 7268524, 7268524,
7272620, 7272620, 7273253, 7273253, 7283628, 7283628, 7289442,
7289442, 7289525, 7289525, 7289525, 7301987, 7301987, 7305259,
7305259, 7307986, 7307986, 7310332, 7310332, 7333490, 7333490,
7333502, 7333502, 7414991, 7414991), invid = c(24104, 38775,
38776, 34281, 34282, 20002, 22284, 31921, 31922, 26841, 26843,
17763, 17764, 38087, 38088, 38089, 34843, 38412, 32514, 33946,
28587, 28588, 17204, 17205, 28587, 28588, 28587, 28588, 37008,
37009), dom_st = c(0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 0,
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0), prim_st = c(1,
2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 1, 2, 3, 3, 3, 1, 1, 5,
5, 3, 3, 5, 5, 5, 5, 3, 3), pat_st = c(1, 2, 2, 2, 2, 2, 2, 1,
1, 1, 1, 48, 63, 1, 1, 1, 1, 1, 1, 1, 5, 5, 14, 14, 5, 5, 5,
5, 1, 1), net_st = c(0, 3, 3, 2, 2, 0, 0, 4, 4, 2, 2, 10, 9,
0, 0, 1, 2, 2, 0, 0, 2, 2, 4, 4, 2, 2, 2, 2, 0, 0)), .Names = c("pnum",
"invid", "dom_st", "prim_st", "pat_st", "net_st"), class = c("data.table",
"data.frame"), row.names = c(NA, -30L), .internal.selfref = <pointer: 0x0000000000230788>)
This works for me:
library(data.table)
setDT(DT)
# find relevant columns for call to simil
cols <- stringr::str_subset(names(DT), "_st$")
cols
#[1] "dom_st" "prim_st" "pat_st" "net_st"
DT[, (mean(proxy::simil(.SD, method="cosine"))), .SDcols = cols, by = pnum]
# pnum V1
# 1: 7265873 NaN
# 2: 7266757 1.0000000
# 3: 7268524 1.0000000
# 4: 7272620 1.0000000
# 5: 7273253 1.0000000
# 6: 7283628 1.0000000
# 7: 7289442 0.9968006
# 8: 7289525 0.9151220
# 9: 7301987 1.0000000
#10: 7305259 1.0000000
#11: 7307986 1.0000000
#12: 7310332 1.0000000
#13: 7333490 1.0000000
#14: 7333502 1.0000000
#15: 7414991 1.0000000
Note: I need to wrap the j
expression in parantheses. Without, I do get an error messages which I don't understand:
DT[, mean(proxy::simil(.SD, method="cosine")), .SDcols = cols, by = pnum]
Error in FUN(X[[i]], ...) :
Invalid column: it has dimensions. Can't format it. If it's the result of data.table(table()), use as.data.table(table()) instead.
If you want to get the similarity matrices for each pnum
(before averaging them) I suggest to use lapply()
which returns a list:
pnums <- DT[, unique(pnum)]
results <- lapply(pnums, function(x) {
proxy::simil(DT[pnum == x, cols, with = FALSE], method="cosine")
})
setNames(results, pnums)
#$`7265873`
#simil(0)
#
#$`7266757`
# 1
#2 1
#
#$`7268524`
# 1
#2 1
#
#$`7272620`
# 1
#2 1
#
#$`7273253`
# 1
#2 1
#
#$`7283628`
# 1
#2 1
#
#$`7289442`
# 1
#2 0.9968006
#
#$`7289525`
# 1 2
#2 0.9486833
#3 0.8528029 0.9438798
#
#$`7301987`
# 1
#2 1
#
#$`7305259`
# 1
#2 1
#
#$`7307986`
# 1
#2 1
#
#$`7310332`
# 1
#2 1
#
#$`7333490`
# 1
#2 1
#
#$`7333502`
# 1
#2 1
#
#$`7414991`
# 1
#2 1
The OP has added an additional requirement that he wants to compute a number of aggregate values for each pnum
. This can be achieved by
DT[, {
sim_mat <- proxy::simil(.SD, method="cosine")
list(min = min(sim_mat), max = max(sim_mat),
mean = mean(sim_mat), sd = sd(sim_mat))
}, .SDcols = cols, by = pnum]
# pnum min max mean sd
# 1: 7265873 Inf -Inf NaN NA
# 2: 7266757 1.0000000 1.0000000 1.0000000 NA
# 3: 7268524 1.0000000 1.0000000 1.0000000 NA
# 4: 7272620 1.0000000 1.0000000 1.0000000 NA
# 5: 7273253 1.0000000 1.0000000 1.0000000 NA
# 6: 7283628 1.0000000 1.0000000 1.0000000 NA
# 7: 7289442 0.9968006 0.9968006 0.9968006 NA
# 8: 7289525 0.8528029 0.9486833 0.9151220 0.05402336
# 9: 7301987 1.0000000 1.0000000 1.0000000 NA
#10: 7305259 1.0000000 1.0000000 1.0000000 NA
#11: 7307986 1.0000000 1.0000000 1.0000000 NA
#12: 7310332 1.0000000 1.0000000 1.0000000 NA
#13: 7333490 1.0000000 1.0000000 1.0000000 NA
#14: 7333502 1.0000000 1.0000000 1.0000000 NA
#15: 7414991 1.0000000 1.0000000 1.0000000 NA
DT <- structure(list(pnum = c(7265873, 7266757, 7266757, 7268524, 7268524,
7272620, 7272620, 7273253, 7273253, 7283628, 7283628, 7289442,
7289442, 7289525, 7289525, 7289525, 7301987, 7301987, 7305259,
7305259, 7307986, 7307986, 7310332, 7310332, 7333490, 7333490,
7333502, 7333502, 7414991, 7414991), invid = c(24104, 38775,
38776, 34281, 34282, 20002, 22284, 31921, 31922, 26841, 26843,
17763, 17764, 38087, 38088, 38089, 34843, 38412, 32514, 33946,
28587, 28588, 17204, 17205, 28587, 28588, 28587, 28588, 37008,
37009), dom_st = c(0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 0,
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0), prim_st = c(1,
2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 1, 2, 3, 3, 3, 1, 1, 5,
5, 3, 3, 5, 5, 5, 5, 3, 3), pat_st = c(1, 2, 2, 2, 2, 2, 2, 1,
1, 1, 1, 48, 63, 1, 1, 1, 1, 1, 1, 1, 5, 5, 14, 14, 5, 5, 5,
5, 1, 1), net_st = c(0, 3, 3, 2, 2, 0, 0, 4, 4, 2, 2, 10, 9,
0, 0, 1, 2, 2, 0, 0, 2, 2, 4, 4, 2, 2, 2, 2, 0, 0)), .Names = c("pnum",
"invid", "dom_st", "prim_st", "pat_st", "net_st"), class = c("data.table",
"data.frame"), row.names = c(NA, -30L))