Search code examples
rdplyrnormalize

Normalize by Group


I'm trying to normalize the StrengthCode by Item

E.g.

ID    Item    StrengthCode
7     A       1
7     A       5
7     A       7
8     B       1
8     B       3
9     A       5
9     A       3

What I need to achieve is something like this:

ID    Item    StrengthCode    Nor
7     A       1    0.14
7     A       5    0.71
7     A       7    1
8     B       1    0.34
8     B       3    1
9     A       5    0.71
9     A       3    0.42

I tried this code but I'm stuck.... if you can help me would be awesome!!!

normalit <- function(m){(m - min(m))/(max(m)-min(m))}

Tbl.Test <- Tbl.3.1 %>%
  group_by(ID, Item) %>%
  mutate(Nor = normalit(StregthCode))

I get this error:

Warning message NAs introduced by coercion


Solution

  • Your desired output looks like you are wanting this:

    df <- read.table(header=TRUE, text=
    'ID    Item    StrengthCode
    7     A       1
    7     A       5
    7     A       7
    8     B       1
    8     B       3
    9     A       5
    9     A       3')
    df$Nor <- ave(df$StrengthCode, df$Item, FUN=function(x) x/max(x)) 
    df
    # > df
    #   ID Item StrengthCode       Nor
    # 1  7    A            1 0.1428571
    # 2  7    A            5 0.7142857
    # 3  7    A            7 1.0000000
    # 4  8    B            1 0.3333333
    # 5  8    B            3 1.0000000
    # 6  9    A            5 0.7142857
    # 7  9    A            3 0.4285714
    

    With dplyr you can do (thx to Sotos for the comment+code):

    library("dplyr")
    (df %>% group_by(Item) %>% mutate(Nor = StrengthCode/max(StrengthCode))) 
    # > (df %>% group_by(Item) %>% mutate(Nor = StrengthCode/max(StrengthCode)))
    # Source: local data frame [7 x 4]
    # Groups: Item [2]
    # 
    #      ID   Item StrengthCode       Nor
    #   <int> <fctr>        <int>     <dbl>
    # 1     7      A            1 0.1428571
    # 2     7      A            5 0.7142857
    # 3     7      A            7 1.0000000
    # 4     8      B            1 0.3333333
    # 5     8      B            3 1.0000000
    # 6     9      A            5 0.7142857
    # 7     9      A            3 0.4285714