I have an array
a = array([[ 3.55679502, 3.46622505],
[ 1.03670334, 2.43254031],
[ 1.12185975, 3.25257322]])
Now I normalized it with numpys linalg.norm
method
norm_a = a/np.linalg.norm(a)
It gives normalized values in the range of (0,1) as
norm_a = array([[ 0.53930891, 0.52557599],
[ 0.15719302, 0.36884067],
[ 0.1701051 , 0.49318044]])
Now, using norm_a
, how can I recover original de-normalized matrix a
?
Do the opposite, simple maths really:
In [310]:
norm_a * np.linalg.norm(a)
Out[310]:
array([[ 3.55679502, 3.46622505],
[ 1.03670334, 2.43254031],
[ 1.12185975, 3.25257322]])