I'm trying to flatten a json file using json_normalize in Python (Pandas), but being a noob at this I always seem to end up in a KeyError.
What I would like to achieve is a DataFrame with all the Plays in a game.
I've tried numerous variants of paths and prefixes, but no success. Googled a lot as well, but I'm still falling short.
What I would like to end up with is a DataFrame like: period, time, type, player1, player2, xcord, ycord
import pandas as pd
import json
with open('PlayByPlay.json') as data_file:
data = json.load(data_file)
from pandas.io.json import json_normalize
records = json_normalize(data)
plays = records['data.game.plays.play'][0]
plays
Would generate
{'aoi': [8470324, 8473449, 8475158, 8475215, 8477499, 8477933],
'apb': [],
'as': 0,
'asog': 0,
'desc': 'Zack Kassian hit Kyle Okposo',
'eventid': 7,
'formalEventId': 'EDM7',
'hoi': [8471678, 8475178, 8475660, 8476454, 8476457, 8476472],
'hpb': [],
'hs': 0,
'hsog': 0,
'localtime': '5:12 PM',
'p1name': 'Zack Kassian',
'p2name': 'Kyle Okposo',
'p3name': '',
'period': 1,
'pid': 8475178,
'pid1': 8475178,
'pid2': 8473449,
'pid3': '',
'playername': 'Zack Kassian',
'strength': 701,
'sweater': '44',
'teamid': 22,
'time': '00:28',
'type': 'Hit',
'xcoord': 22,
'ycoord': 38}
Json
{'data': {'game': {'awayteamid': 7,
'awayteamname': 'Buffalo Sabres',
'awayteamnick': 'Sabres',
'hometeamid': 22,
'hometeamname': 'Edmonton Oilers',
'hometeamnick': 'Oilers',
'plays': {'play': [{'aoi': [8470324,
8473449,
8475158,
8475215,
8477499,
8477933],
'apb': [],
'as': 0,
'asog': 0,
'desc': 'Zack Kassian hit Kyle Okposo',
'eventid': 7,
'formalEventId': 'EDM7',
'hoi': [8471678, 8475178, 8475660, 8476454, 8476457, 8476472],
'hpb': [],
'hs': 0,
'hsog': 0,
'localtime': '5:12 PM',
'p1name': 'Zack Kassian',
'p2name': 'Kyle Okposo',
'p3name': '',
'period': 1,
'pid': 8475178,
'pid1': 8475178,
'pid2': 8473449,
'pid3': '',
'playername': 'Zack Kassian',
'strength': 701,
'sweater': '44',
'teamid': 22,
'time': '00:28',
'type': 'Hit',
'xcoord': 22,
'ycoord': 38},
{'aoi': [8471742, 8475179, 8475215, 8475220, 8475235, 8475728],
'apb': [],
'as': 0,
'asog': 0,
'desc': 'Jesse Puljujarvi Tip-In saved by Robin Lehner',
'eventid': 59,
'formalEventId': 'EDM59',
'hoi': [8473468, 8474034, 8475660, 8477498, 8477934, 8479344],
'hpb': [],
'hs': 0,
'hsog': 1,
'localtime': '5:13 PM',
'p1name': 'Jesse Puljujarvi',
'p2name': 'Robin Lehner',
'p3name': '',
'period': 1,
'pid': 8479344,
'pid1': 8479344,
'pid2': 8475215,
'pid3': '',
'playername': 'Jesse Puljujarvi',
'strength': 701,
'sweater': '98',
'teamid': 22,
'time': '01:32',
'type': 'Shot',
'xcoord': 81,
'ycoord': 3}]}},
'refreshInterval': 0}}
If you have only one game, this will create the dataframe you want:
json_normalize(data['data']['game']['plays']['play'])
Then you just need to extract the columns you're interested in.