Let me preface this with.. I have extremely limited experience with ASM, and even less with SIMD.
But it happens that I have the following MMX/SSE optimised code, that I would like to port across to AltiVec instructions for use on PPC/Cell processors.
This is probably a big ask.. Even though it's only a few lines of code, I've had no end of trouble trying to work out what's going on here.
The original function:
static inline int convolve(const short *a, const short *b, int n)
{
int out = 0;
union {
__m64 m64;
int i32[2];
} tmp;
tmp.i32[0] = 0;
tmp.i32[1] = 0;
while (n >= 4) {
tmp.m64 = _mm_add_pi32(tmp.m64,
_mm_madd_pi16(*((__m64 *)a),
*((__m64 *)b)));
a += 4;
b += 4;
n -= 4;
}
out = tmp.i32[0] + tmp.i32[1];
_mm_empty();
while (n --)
out += (*(a++)) * (*(b++));
return out;
}
Any tips on how I might rewrite this to use AltiVec instructions?
My first attempt (a very wrong attempt) looks something like this.. But it's not entirely (or even remotely) correct.
static inline int convolve_altivec(const short *a, const short *b, int n)
{
int out = 0;
union {
vector unsigned int m128;
int i64[2];
} tmp;
vector unsigned int zero = {0, 0, 0, 0};
tmp.i64[0] = 0;
tmp.i64[1] = 0;
while (n >= 8) {
tmp.m128 = vec_add(tmp.m128,
vec_msum(*((vector unsigned short *)a),
*((vector unsigned short *)b), zero));
a += 8;
b += 8;
n -= 8;
}
out = tmp.i64[0] + tmp.i64[1];
#endif
while (n --)
out += (*(a++)) * (*(b++));
return out;
}
You're not far off - I fixed a few minor problems, cleaned up the code a little, added a test harness, and it seems to work OK now:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <altivec.h>
static int convolve_ref(const short *a, const short *b, int n)
{
int out = 0;
int i;
for (i = 0; i < n; ++i)
{
out += a[i] * b[i];
}
return out;
}
static inline int convolve_altivec(const short *a, const short *b, int n)
{
int out = 0;
union {
vector signed int m128;
int i32[4];
} tmp;
const vector signed int zero = {0, 0, 0, 0};
assert(((unsigned long)a & 15) == 0);
assert(((unsigned long)b & 15) == 0);
tmp.m128 = zero;
while (n >= 8)
{
tmp.m128 = vec_msum(*((vector signed short *)a),
*((vector signed short *)b), tmp.m128);
a += 8;
b += 8;
n -= 8;
}
out = tmp.i32[0] + tmp.i32[1] + tmp.i32[2] + tmp.i32[3];
while (n --)
out += (*(a++)) * (*(b++));
return out;
}
int main(void)
{
const int n = 100;
vector signed short _a[n / 8 + 1];
vector signed short _b[n / 8 + 1];
short *a = (short *)_a;
short *b = (short *)_b;
int sum_ref, sum_test;
int i;
for (i = 0; i < n; ++i)
{
a[i] = rand();
b[i] = rand();
}
sum_ref = convolve_ref(a, b, n);
sum_test = convolve_altivec(a, b, n);
printf("sum_ref = %d\n", sum_ref);
printf("sum_test = %d\n", sum_test);
printf("%s\n", sum_ref == sum_test ? "PASS" : "FAIL");
return 0;
}