class NeuralNetwork(object):
def __init__(self, data):
self.data = data
def scan(self):
print(self.data)
print(self.data['AMZN'].shape)
def create_layer(self):
layer = np.zeros(shape = (self.data['AMZN'].shape[1], 10))
print(layer)
print(layer.shape)
a1 = sigmoid(7)
print a1
if __name__ == "__main__":
#NeuralNetwork([3,2]).scan()
#network = NeuralNetwork(dataread.test_run())
network = NeuralNetwork(dataread.test_run())
print (network.create_layer())
layer1 = network.create_layer()
print (layer1)
#print (network.data['AMZN'].shape)
#print (np.dot(network.data['AMZN'], layer1))
My question here is why is it that within the class when I print out the layer tha I set to be a 12 x 10 array of 0's it prints that out, but when I go to recreate it as layer1 = network.create_layer() it outputs a None? Shouldn't they be the same thing?
create_layer
needs to either return
something, or change the object somehow.
Like this:
def create_layer(self):
layer = np.zeros(shape = (self.data['AMZN'].shape[1], 10))
# print(layer)
# print(layer.shape)
return layer