I have a directed graph with colored edges (red & blue) that may contain cycles. The question is to write an algorithm given two vertices (s,t) that finds the path with the minimal number of color changes between s and t (if such path exists).
I have found a solution using a variation of Dijkstra (I created a new graph where each vertex correspond to an edge of the previous graph, and contains the color of the edge. For example: if (1,2) is an edge in the old graph, then (1/2) is a vertex in the new one. I connected "adjacent edges" vertices, and edges in the new graph that change color got a weight of 1, where same color transition is 0).
I am looking for a solution in linear time (of V and E). The above one uses VxE edges in the new graph.
Is there such solution to find the minimal path?
First phase: Reduction to the shortest path problem.
i
we create two nodes i_red
and i_blue
. i->j
we create two edges i_red->j_blue
with weight 1
and i_blue->j_blue
with weight 0
. start_red
and start_blue
with connection weight of 0
.target_red
and target_blue
with weight 0
-connections.Now, search for the shortest path from newly created start node to the newly created target node. There are twice as many nodes and twice as many edges as in the original graph, so the reduction is linear.
After you reduced the problem to the shortest path search, you could do the following:
Step: use only edges with weight 0, treat the graph as undirected one and with help of bfs you can find all components in this 0-edge-graph in linear time.
Step: run bfs on the graph where the components from the prior step are glued together as super-nodes, so all edges have weight 1 and bfs will find the shortest path.
Obviously all three parts of this algorithm (bfs in 0-edge-graph, glueing the components to super-nodes and the bfs in the resulting graph) run in linear time.