I need to use CountVectorizer on text that contains names of programming languages like 'R','C' etc . But CountVectorizer discards "words" that contain only one character.
cv1 = CountVectorizer(min_df=2, stop_words='english')
tokenize = cv1.build_tokenizer()
tokenize("Python, Time Series, Cloud, Data Modeling, R")
Output:
Out[172]: ['Python', 'Time', 'Series', 'Cloud', 'Data', 'Modeling']
I then tweak the 'token_pattern' so that it considers 'R' also as a token.
cv1 = CountVectorizer(min_df=1, stop_words='english', token_pattern=r'(?u)\b\w\w+\b|R|C' ,tokenizer=None)
tokenize = cv1.build_tokenizer()
tokenize("Python, Time Series, Cloud, R ,Data Modeling")
Output : Out[187]: ['Python', 'Time', 'Series', 'Cloud', 'R', 'Data', 'Modeling']
But ,
cvmatrix1 = cv1.fit_transform(["Python, Time Series, Cloud, R ,Data Modeling"])
cv1.vocabulary_
Gives the output :
Out[189]: {'cloud': 0, 'data': 1, 'modeling': 2, 'python': 3, 'series': 4, 'time': 5}
Why is this happening?`
The reason that R is dropped is that the regex captures the capital letter R, where the actual input of the tokenizer will be in lower case. The reason behind that is that the pre-processor
call the .lower()
function on the original string before tokenizing it:
tokenize = cv1.build_tokenizer()
preprocess = cv1.build_preprocessor()
tokenize(preprocess("Python, Time Series, Cloud, R ,Data Modeling"))
Yields:
['python', 'time', 'series', 'cloud', 'data', 'modeling']