The problem statement is as follows:
I am working with Abaqus, a program for analyzing mechanical problems. It is basically a standalone Python interpreter with its own objects etc. Within this program, I run a python script to set up my analysis (so this script can be modified). It also contains a method which has to be executed when an external signal is received. These signals come from the main script that I am running in my own Python engine.
For now, I have the following workflow: The main script sets a boolean to True when the Abaqus script has to execute a specific function, and pickles this boolean into a file. The Abaqus script regularly checks this file to see whether the boolean has been set to true. If so, it does an analysis and pickles the output, so that the main script can read this output and act on it.
I am looking for a more efficient way to signal the other process to start the analysis, since there is a lot of unnecessary checking going on right know. Data exchange via pickle is not an issue for me, but a more efficient solution is certainly welcome.
Search results always give me solutions with subprocess or the like, which is for two processes started within the same interpreter. I have also looked at ZeroMQ since this is supposed to achieve things like this, but I think this is overkill and would like a solution in python. Both interpreters are running python 2.7 (although different versions)
Edit:
Like @MattP, I'll add this statement of my understanding:
Background
I believe that you are running a product called abaqus. The abaqus product includes a linked-in python interpreter that you can access somehow (possibly by running abaqus python foo.py
on the command line).
You also have a separate python installation, on the same machine. You are developing code, possibly including numpy/scipy, to run on that python installation.
These two installations are different: they have different binary interpreters, different libraries, different install paths, etc. But they live on the same physical host.
Your objective is to enable the "plain python" programs, written by you, to communicate with one or more scripts running in the "Abaqus python" environment, so that those scripts can perform work inside the Abaqus system, and return results.
Solution
Here is a socket based solution. There are two parts, abqlistener.py
and abqclient.py
. This approach has the advantage that it uses a well-defined mechanism for "waiting for work." No polling of files, etc. And it is a "hard" API. You can connect to a listener process from a process on the same machine, running the same version of python, or from a different machine, or from a different version of python, or from ruby or C or perl or even COBOL. It allows you to put a real "air gap" into your system, so you can develop the two parts with minimal coupling.
The server part is abqlistener
. The intent is that you would copy some of this code into your Abaqus script. The abq process would then become a server, listening for connections on a specific port number, and doing work in response. Sending back a reply, or not. Et cetera.
I am not sure if you need to do setup work for each job. If so, that would have to be part of the connection. This would just start ABQ, listen on a port (forever), and deal with requests. Any job-specific setup would have to be part of the work process. (Maybe send in a parameter string, or the name of a config file, or whatever.)
The client part is abqclient
. This could be moved into a module, or just copy/pasted into your existing non-ABQ program code. Basically, you open a connection to the right host:port combination, and you're talking to the server. Send in some data, get some data back, etc.
This stuff is mostly scraped from example code on-line. So it should look real familiar if you start digging into anything.
Here's abqlistener.py:
# The below usage example is completely bogus. I don't have abaqus, so
# I'm just running python2.7 abqlistener.py [options]
usage = """
abacus python abqlistener.py [--host 127.0.0.1 | --host mypc.example.com ] \\
[ --port 2525 ]
Sets up a socket listener on the host interface specified (default: all
interfaces), on the given port number (default: 2525). When a connection
is made to the socket, begins processing data.
"""
import argparse
parser = argparse.ArgumentParser(description='Abacus listener',
add_help=True,
usage=usage)
parser.add_argument('-H', '--host', metavar='INTERFACE', default='',
help='Interface IP address or name, or (default: empty string)')
parser.add_argument('-P', '--port', metavar='PORTNUM', type=int, default=2525,
help='port number of listener (default: 2525)')
args = parser.parse_args()
import SocketServer
import json
class AbqRequestHandler(SocketServer.BaseRequestHandler):
"""Request handler for our socket server.
This class is instantiated whenever a new connection is made, and
must override `handle(self)` in order to handle communicating with
the client.
"""
def do_work(self, data):
"Do some work here. Call abaqus, whatever."
print "DO_WORK: Doing work with data!"
print data
return { 'desc': 'low-precision natural constants','pi': 3, 'e': 3 }
def handle(self):
# Allow the client to send a 1kb message (file path?)
self.data = self.request.recv(1024).strip()
print "SERVER: {} wrote:".format(self.client_address[0])
print self.data
result = self.do_work(self.data)
self.response = json.dumps(result)
print "SERVER: response to {}:".format(self.client_address[0])
print self.response
self.request.sendall(self.response)
if __name__ == '__main__':
print args
server = SocketServer.TCPServer((args.host, args.port), AbqRequestHandler)
print "Server starting. Press Ctrl+C to interrupt..."
server.serve_forever()
And here's abqclient.py
:
usage = """
python2.7 abqclient.py [--host HOST] [--port PORT]
Connect to abqlistener on HOST:PORT, send a message, wait for reply.
"""
import argparse
parser = argparse.ArgumentParser(description='Abacus listener',
add_help=True,
usage=usage)
parser.add_argument('-H', '--host', metavar='INTERFACE', default='',
help='Interface IP address or name, or (default: empty string)')
parser.add_argument('-P', '--port', metavar='PORTNUM', type=int, default=2525,
help='port number of listener (default: 2525)')
args = parser.parse_args()
import json
import socket
message = "I get all the best code from stackoverflow!"
print "CLIENT: Creating socket..."
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print "CLIENT: Connecting to {}:{}.".format(args.host, args.port)
s.connect((args.host, args.port))
print "CLIENT: Sending message:", message
s.send(message)
print "CLIENT: Waiting for reply..."
data = s.recv(1024)
print "CLIENT: Got response:"
print json.loads(data)
print "CLIENT: Closing socket..."
s.close()
And here's what they print when I run them together:
$ python2.7 abqlistener.py --port 3434 &
[2] 44088
$ Namespace(host='', port=3434)
Server starting. Press Ctrl+C to interrupt...
$ python2.7 abqclient.py --port 3434
CLIENT: Creating socket...
CLIENT: Connecting to :3434.
CLIENT: Sending message: I get all the best code from stackoverflow!
CLIENT: Waiting for reply...
SERVER: 127.0.0.1 wrote:
I get all the best code from stackoverflow!
DO_WORK: Doing work with data!
I get all the best code from stackoverflow!
SERVER: response to 127.0.0.1:
{"pi": 3, "e": 3, "desc": "low-precision natural constants"}
CLIENT: Got response:
{u'pi': 3, u'e': 3, u'desc': u'low-precision natural constants'}
CLIENT: Closing socket...
References:
argparse
, SocketServer
, json
, socket
are all "standard" Python libraries.