I'm doing one hot encoding over a categorical column which has some 18 different kind of values. I want to create new columns for only those values, which appear more than some threshold (let's say 1%), and create another column named other values
which has 1 if value is other than those frequent values.
I'm using Pandas with Sci-kit learn. I've explored pandas get_dummies
and sci-kit learn's one hot encoder
, but can't figure out how to bundle together less frequent values into one column.
plan
pd.get_dummies
to one hot encode as normalsum() < threshold
to identify columns that get aggregated
pd.value_counts
with the parameter normalize=True
to get percentage of occurance.join
def hot_mess2(s, thresh):
d = pd.get_dummies(s)
f = pd.value_counts(s, sort=False, normalize=True) < thresh
if f.sum() == 0:
return d
else:
return d.loc[:, ~f].join(d.loc[:, f].sum(1).rename('other'))
Consider the pd.Series
s
s = pd.Series(np.repeat(list('abcdef'), range(1, 7)))
s
0 a
1 b
2 b
3 c
4 c
5 c
6 d
7 d
8 d
9 d
10 e
11 e
12 e
13 e
14 e
15 f
16 f
17 f
18 f
19 f
20 f
dtype: object
hot_mess(s, 0)
a b c d e f
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 1 0 0 0
5 0 0 1 0 0 0
6 0 0 0 1 0 0
7 0 0 0 1 0 0
8 0 0 0 1 0 0
9 0 0 0 1 0 0
10 0 0 0 0 1 0
11 0 0 0 0 1 0
12 0 0 0 0 1 0
13 0 0 0 0 1 0
14 0 0 0 0 1 0
15 0 0 0 0 0 1
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 0 0 0 0 0 1
19 0 0 0 0 0 1
20 0 0 0 0 0 1
hot_mess(s, .1)
c d e f other
0 0 0 0 0 1
1 0 0 0 0 1
2 0 0 0 0 1
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 0 1 0 0 0
9 0 1 0 0 0
10 0 0 1 0 0
11 0 0 1 0 0
12 0 0 1 0 0
13 0 0 1 0 0
14 0 0 1 0 0
15 0 0 0 1 0
16 0 0 0 1 0
17 0 0 0 1 0
18 0 0 0 1 0
19 0 0 0 1 0
20 0 0 0 1 0