Search code examples
pythontensorflowtensorboard

Tensorboard get blank page


I'm new in tensorflow and i follow this tutorial to learn about this framework.

Now i'm trying to visualize my graph using Tensorboard but but i get a tensorboard blank page without any result.

The code that i use to visualize the graph is:

from __future__ import print_function
import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, n_layer,     activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
    with tf.name_scope('weights'):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
        tf.summary.histogram(layer_name + '/weights', Weights)
    with tf.name_scope('biases'):
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
        tf.summary.histogram(layer_name + '/biases', biases)
    with tf.name_scope('Wx_plus_b'):
        Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b, )
    tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs


# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                    reduction_indices=[1]))
    tf.summary.scalar('loss', loss)

with tf.name_scope('train'):
     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()

writer = tf.summary.FileWriter("logs/", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)

for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        result = sess.run(merged,
                      feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)

I'm using Ubuntu 16.04 with python 2.7 and my tensorflow version is 1.0.1.

When i run the program is created a new log file, and after that i use theis command to visualize the tensorboard:

 tensorboard --logdir=/logs

then if i go to http://127.0.1.1:6006/ get the Tensorboard page without any summary, why?

I also try to use another browser but not works.


Solution

  • You are saving to the logs folder at the place where you are running your ipython notebook. However, your Tensorboard tries to load the /logs folder (instead of /users/something/logs). Try it with --logdir=./logs