Let $F \in \mathbb{R}^{S \times F}$ be a matrix of features, I want to classify them using logistic regression with autograd [1]. The code I am using is similar to the one in the following example [2].
The only thing I want to change is that I have an additional weight matrix $W$ in $\mathbb{R}^{F \times L}$ that I want to apply to each feature. So each feature is multiplied with $W$ and then feed into the logistic regression.
Is it somehow possible to train $W$ and the weights of the logistic regression simultaneously using autograd?
I have tried the following code, unfortunately the weights stay at value 0.
import autograd.numpy as np
from autograd import grad
global inputs
def sigmoid(x):
return 0.5 * (np.tanh(x) + 1)
def logistic_predictions(weights, inputs):
# Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))
def training_loss(weights):
global inputs
# Training loss is the negative log-likelihood of the training labels.
feature_weights = weights[3:]
feature_weights = np.reshape(feature_weights, (3, 3))
inputs = np.dot(inputs, feature_weights)
preds = logistic_predictions(weights[0:3], inputs)
label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))
# Build a toy dataset.
inputs = np.array([[0.52, 1.12, 0.77],
[0.88, -1.08, 0.15],
[0.52, 0.06, -1.30],
[0.74, -2.49, 1.39]])
targets = np.array([True, True, False, True])
# Define a function that returns gradients of training loss using autograd.
training_gradient_fun = grad(training_loss)
# Optimize weights using gradient descent.
weights = np.zeros([3 + 3 * 3])
print "Initial loss:", training_loss(weights)
for i in xrange(100):
print(i)
print(weights)
weights -= training_gradient_fun(weights) * 0.01
print "Trained loss:", training_loss(weights)
[1] https://github.com/HIPS/autograd
[2] https://github.com/HIPS/autograd/blob/master/examples/logistic_regression.py
Typical practice is to concatenate all "vectorized" parameters into the decision variables vector.
If you update logistic_predictions
to include the W
matrix, via something like
def logistic_predictions(weights_and_W, inputs):
'''
Here, :arg weights_and_W: is an array of the form [weights W.ravel()]
'''
# Outputs probability of a label being true according to logistic model.
weights = weights_and_W[:inputs.shape[1]]
W_raveled = weights_and_W[inputs.shape[1]:]
n_W = len(W_raveled)
W = W_raveled.reshape(inputs.shape[1], n_W/inputs.shape[1])
return sigmoid(np.dot(np.dot(inputs, W), weights))
then simply change traning_loss
to (from the original source example)
def training_loss(weights_and_W):
# Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights_and_W, inputs)
label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))