Search code examples
pythonmultithreadingscikit-learnioerror

"No space left on device" error while fitting Sklearn model


I'm fitting a LDA model with lots of data using scikit-learn. Relevant code piece looks like this:

lda = LatentDirichletAllocation(n_topics = n_topics, 
                                max_iter = iters,
                                learning_method = 'online',
                                learning_offset = offset,
                                random_state = 0,
                                evaluate_every = 5,
                                n_jobs = 3,
                                verbose = 0)
lda.fit(X)

(I guess the only possibly relevant detail here is that I'm using multiple jobs.)

After some time I'm getting "No space left on device" error, even though there is plenty of space on the disk and plenty of free memory. I tried the same code several times, on two different computers (on my local machine and on a remote server), first using python3, then using python2, and each time I ended up with the same error.

If I run the same code on a smaller sample of data everything works fine.

The entire stack trace:

Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 271, in save
    obj, filename = self._write_array(obj, filename)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 231, in _write_array
    self.np.save(filename, array)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/npyio.py", line 491, in save
    pickle_kwargs=pickle_kwargs)
  File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/format.py", line 584, in write_array
    array.tofile(fp)
IOError: 275500 requested and 210934 written


IOErrorTraceback (most recent call last)
<ipython-input-7-6af7e7c9845f> in <module>()
      7                                 n_jobs = 3,
      8                                 verbose = 0)
----> 9 lda.fit(X)

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in fit(self, X, y)
    509                     for idx_slice in gen_batches(n_samples, batch_size):
    510                         self._em_step(X[idx_slice, :], total_samples=n_samples,
--> 511                                       batch_update=False, parallel=parallel)
    512                 else:
    513                     # batch update

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _em_step(self, X, total_samples, batch_update, parallel)
    403         # E-step
    404         _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
--> 405                                      parallel=parallel)
    406 
    407         # M-step

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _e_step(self, X, cal_sstats, random_init, parallel)
    356                                               self.mean_change_tol, cal_sstats,
    357                                               random_state)
--> 358             for idx_slice in gen_even_slices(X.shape[0], n_jobs))
    359 
    360         # merge result

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
    808                 # consumption.
    809                 self._iterating = False
--> 810             self.retrieve()
    811             # Make sure that we get a last message telling us we are done
    812             elapsed_time = time.time() - self._start_time

/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
    725                 job = self._jobs.pop(0)
    726             try:
--> 727                 self._output.extend(job.get())
    728             except tuple(self.exceptions) as exception:
    729                 # Stop dispatching any new job in the async callback thread

/home/ubuntu/anaconda2/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
    565             return self._value
    566         else:
--> 567             raise self._value
    568 
    569     def _set(self, i, obj):

IOError: [Errno 28] No space left on device

Solution

  • Had the same problem with LatentDirichletAllocation. It seems, that your are running out of shared memory (/dev/shm when you run df -h). Try setting JOBLIB_TEMP_FOLDER environment variable to something different: e.g., to /tmp. In my case it has solved the problem.

    Or just increase the size of the shared memory, if you have the appropriate rights for the machine you are training the LDA on.