I am running a mixed model using lme4
in R:
full_mod3=lmer(logcptplus1 ~ logdepth*logcobb + (1|fyear) + (1 |flocation),
data=cpt, REML=TRUE)
summary:
Formula: logcptplus1 ~ logdepth * logcobb + (1 | fyear) + (1 | flocation)
Data: cpt
REML criterion at convergence: 577.5
Scaled residuals:
Min 1Q Median 3Q Max
-2.7797 -0.5431 0.0248 0.6562 2.1733
Random effects:
Groups Name Variance Std.Dev.
fyear (Intercept) 0.2254 0.4748
flocation (Intercept) 0.1557 0.3946
Residual 0.9663 0.9830
Number of obs: 193, groups: fyear, 16; flocation, 16
Fixed effects:
Estimate Std. Error t value
(Intercept) 4.3949 1.2319 3.568
logdepth 0.2681 0.4293 0.625
logcobb -0.7189 0.5955 -1.207
logdepth:logcobb 0.3791 0.2071 1.831
I have used the effects
package and function in R to calculate the 95% confidence intervals for the model output. I have calculated and extracted the 95% CI and standard error using the effects
package so that I can examine the relationship between the predictor variable of importance and the response variable by holding the secondary predictor variable (logdepth
) constant at the median (2.5) in the data set:
gm=4.3949 + 0.2681*depth_median + -0.7189*logcobb_range + 0.3791*
(depth_median*logcobb_range)
ef2=effect("logdepth*logcobb",full_mod3,
xlevels=list(logcobb=seq(log(0.03268),log(0.37980),,200)))
I have attempted to bootstrap the 95% CIs using code from here. However, I need to calculate the 95% CIs for only the median depth (2.5). Is there a way to specify in the confint()
code so that I can calculate the CIs needed to visualize the bootstrapped results as in the plot above?
confint(full_mod3,method="boot",nsim=200,boot.type="perc")
You can do this by specifying a custom function:
library(lme4)
?confint.merMod
FUN: bootstrap function; if ‘NULL’, an internal function that returns the fixed-effect parameters as well as the random-effect parameters on the standard deviation/correlation scale will be used. See ‘bootMer’ for details.
So FUN
can be a prediction function (?predict.merMod
) that uses a newdata
argument that varies and fixes appropriate predictor variables.
An example with built-in data (not quite as interesting as yours since there's a single continuous predictor variable, but I think it should illustrate the approach clearly enough):
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
pframe <- data.frame(Days=seq(0,20,by=0.5))
## predicted values at population level (re.form=NA)
pfun <- function(fit) {
predict(fit,newdata=pframe,re.form=NA)
}
set.seed(101)
cc <- confint(fm1,method="boot",FUN=pfun)
Picture:
par(las=1,bty="l")
matplot(pframe$Days,cc,lty=2,col=1,type="l",
xlab="Days",ylab="Reaction")