I have code like this
>>> import pandas as pd
>>> import numpy as np
>>>
>>> df1 = pd.DataFrame({'value':[10,20,np.nan,40],
... 'weight':[1,np.nan,3,4]})
>>> df1
value weight
0 10.0 1.0
1 20.0 NaN
2 NaN 3.0
3 40.0 4.0
>>> (df1["value"] * df1["weight"]).sum() / df1["weight"].sum()
21.25
I want to omit data from calculation if values or weight is missing . i.e I want weighted average like like (10*1 + 40*4) /(1+4) = 34
Please help if this is possible using single expression in pandas.
You can filter first with boolean indexing
, mask is created by notnull
and all
for check all True
values per row:
df1 = df1[df1.notnull().all(axis=1)]
print (df1)
value weight
0 10.0 1.0
3 40.0 4.0
df2 = (df1["value"] * df1["weight"]).sum() / df1["weight"].sum()
print (df2)
34.0
Or check both columns separately:
df1 = df1[df1["value"].notnull() & df1["weight"].notnull()]
print (df1)
value weight
0 10.0 1.0
3 40.0 4.0
Simplier solution with dropna
:
df1 = df1.dropna()
print (df1)
value weight
0 10.0 1.0
3 40.0 4.0
Or if is necessary specify columns:
df1 = df1.dropna(subset=['value','weight'])
print (df1)
value weight
0 10.0 1.0
3 40.0 4.0