I've tried a simple lstm model in keras to do a simple sentiment analysis using imdb dataset using both Sequential model and Model model, and turns out the latter gives a worse result. Here's my code :
model = Sequential()
model.add(Embedding(top_words, embedding_vector_length, input_length=max_review_length))
model.add(LSTM(100))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
It gives a result around 0.6 of accuracy in the first epoch, while the other code that use Model :
_input = Input(shape=[max_review_length], dtype='int32')
embedded = Embedding(
input_dim=top_words,
output_dim=embedding_size,
input_length=max_review_length,
trainable=False,
mask_zero=False
)(_input)
lstm = LSTM(100, return_sequences=True)(embedded)
probabilities = Dense(2, activation='softmax')(lstm)
model = Model(_input, probabilities)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
and it gives 0.5 accuracy as a result of the first epoch and never change afterwards.
Any reason for that, or am i doing something wrong? Thanks in advance
I see two main differences between your two models :