I have a 3d numpy array (n_samples x num_components x 2) in the example below n_samples = 5 and num_components = 7.
I have another array (indices) which is the selected component for each sample which is of shape (n_samples,).
I want to select from the data array given the indices so that the resulting array is n_samples x 2.
The code is below:
import numpy as np
np.random.seed(77)
data=np.random.randint(low=0, high=10, size=(5, 7, 2))
indices = np.array([0, 1, 6, 4, 5])
#how can I select indices from the data array?
For example for data 0, the selected component should be the 0th and for data 1 the selected component should be 1.
Note that I can't use any for loops because I'm using it in Theano and the solution should be solely based on numpy.
Is this what you are looking for?
In [36]: data[np.arange(data.shape[0]),indices,:]
Out[36]:
array([[7, 4],
[7, 3],
[4, 5],
[8, 2],
[5, 8]])