Search code examples
pythonscikit-learncorrelationcovariancepca

Python Sklearn Covariance Matrix diagonal entries incorrect?


I am trying to perform PCA on some data. From my knowledge, the correlation matrix should have entries of 1 along the main diagonal. This is not what I am seeing for .get_covariance() in sklearn PCA. I am wondering why this is the case?
For my own purposes, I can just perform a scaling of the matrix to obtain a matrix with diagonal entries of 1, but I was just wondering, since I have already standardized my data, why are the diagonal entries still not 1?

In [1]: import pandas as pd

In [2]: import numpy as np                                                                                                                      

In [3]: from sklearn.decomposition import PCA                                                                                                   

In [4]: df = pd.read_csv('myTable.csv')                                                                                                         

In [5]: df                                                                                                                                      
Out[5]:                                                                                                                                         
         a1        a2        a3        a4        a5                                                                                             
0 -0.559104  0.185914 -2.331367  0.231150  0.357008                                                                                             
1  0.769835 -0.408685  0.375754  0.051397 -0.075885                                                                                             
2 -1.376530 -0.764808 -2.383611 -0.327153  1.746765                                                                                             
3 -0.830105 -0.197574  1.835807 -0.695089  0.881297                                                                                             
4 -0.991861  1.089319 -0.164139 -0.335003  0.795937                                                                                             
5 -1.132968 -2.240598 -0.101935  0.680038 -0.033921                                                                                             
6 -1.205631 -1.492009 -0.602400 -0.065256 -0.494267                                                                                             
7 -1.210978 -1.220986 -0.017062  0.024422 -0.224585                                                                                             
8 -0.332957  2.114870  0.818108  0.612831 -1.879758                                                                                             
9 -0.350612 -0.563872  0.869303 -0.325626 -0.372874                                                                                             

In [6]: df = (df-df.mean())/df.std()                                                                                                            

In [7]: pca = PCA()                                                                                                                             

In [8]: pca.fit(df)                                                                                                                             
Out[8]: PCA(copy=True, n_components=None, whiten=False)  

In [10]: pca.explained_variance_, pca.components_, pca.get_covariance()                                                                         
Out[10]:                                                                                                                                        
(array([ 1.8780651 ,  1.1526052 ,  0.78052872,  0.55167761,  0.13712337]),                                                                      
 array([[-0.47790108, -0.36036503, -0.38619941, -0.35716396,  0.60417838],                                                                      
        [ 0.25426743,  0.32305024,  0.47784502, -0.72831952,  0.26870322],                                                                      
        [-0.17613902, -0.7303121 ,  0.6250759 , -0.05118019, -0.20562097],                                                                      
        [ 0.82132736, -0.45982165, -0.21938834,  0.03274499,  0.25452296],                                                                      
        [ 0.03681087, -0.14485808, -0.42855924, -0.58162955, -0.67505936]]),                                                                    
 array([[ 0.9       ,  0.30943895,  0.29916112,  0.12605405, -0.32333097],                                                                      
        [ 0.30943895,  0.9       ,  0.14715469,  0.00295615, -0.24279645],                                                                      
        [ 0.29916112,  0.14715469,  0.9       , -0.13683409, -0.38167791],                                                                      
        [ 0.12605405,  0.00295615, -0.13683409,  0.9       , -0.56418468],                                                                      
        [-0.32333097, -0.24279645, -0.38167791, -0.56418468,  0.9       ]]))   

Closed
The problem was with my standardization. I was supposed to use df.std(ddof=0) as suggested by Tonechas


Solution

  • You need to normalize the standard deviation by N rather than by N-1 (which is the default value). This can be changed using the ddof parameter in the call to pandas.DataFrame.std() like this:

    In [146]: from sklearn.decomposition import PCA
    
    In [147]: df
    Out[147]: 
             a1        a2        a3        a4        a5
    0 -0.559104  0.185914 -2.331367  0.231150 -0.559104
    1  0.769835 -0.408685  0.375754  0.051397  0.769835
    2 -1.376530 -0.764808 -2.383611 -0.327153 -1.376530
    3 -0.830105 -0.197574  1.835807 -0.695089 -0.830105
    4 -0.991861  1.089319 -0.164139 -0.335003 -0.991861
    5 -1.132968 -2.240598 -0.101935  0.680038 -1.132968
    6 -1.205631 -1.492009 -0.602400 -0.065256 -1.205631
    7 -1.210978 -1.220986 -0.017062  0.024422 -1.210978
    8 -0.332957  2.114870  0.818108  0.612831 -0.332957
    9 -0.350612 -0.563872  0.869303 -0.325626 -0.350612
    
    In [148]: df = (df-df.mean())/df.std(ddof=0)
    
    In [149]: pca = PCA()
    
    In [150]: pca.fit(df)
    Out[150]: 
    PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
      svd_solver='auto', tol=0.0, whiten=False)
    
    In [151]: pca.get_covariance()
    Out[151]: 
    array([[ 1.  ,  0.34,  0.33,  0.14,  1.  ],
           [ 0.34,  1.  ,  0.16,  0.  ,  0.34],
           [ 0.33,  0.16,  1.  , -0.15,  0.33],
           [ 0.14,  0.  , -0.15,  1.  ,  0.14],
           [ 1.  ,  0.34,  0.33,  0.14,  1.  ]])