In Linux, I have a USB hub with the 'register' shown in the image below. This register is supposed to disable power on a certain port on the hub.
I tried to use LibUSB ( my code is shown below ) to write the register, 0x0A, with all zeros to disable all ports. The problem is, the hub is controlled by the standard Linux USB Hub driver and so the Kernel driver is detached. The write also fails. The failure messages are shown below.
Error messages:
$ /mnt/apps/UsbPowerControl
5 Devices in list.
Vendor:Device = 1908:1320
Vendor:Device = 0403:6001
Vendor:Device = 289d:0010
Vendor:Device = 0424:2513
Vendor:Device = 1d6b:0002
Opening Device = 0424:2513
Device Opened
Kernel Driver Active
Kernel Driver Detached!
Claimed Interface
Data-><-
Writing Data...
libusb: error [submit_bulk_transfer] submiturb failed error -1 errno=2
Write Error
Released Interface
How can I use LibUSB to write this Hub register, to dynamically disable and enable the ports, without unregistering the Linux driver and having my write fail?
#include <iostream>
#include <cassert>
#include <libusb-1.0/libusb.h>
using namespace std;
#define VENDOR_ID 0x0424
#define PRODUCT_ID 0x2513
int main() {
libusb_device **devs; //pointer to pointer of device, used to retrieve a list of devices
libusb_device_handle *dev_handle; //a device handle
libusb_context *ctx = NULL; //a libusb session
int r; //for return values
ssize_t cnt; //holding number of devices in list
r = libusb_init(&ctx); //initialize the library for the session we just declared
if(r < 0) {
cout<<"Init Error "<<r<<endl; //there was an error
return 1;
}
libusb_set_debug(ctx, 3); //set verbosity level to 3, as suggested in the documentation
cnt = libusb_get_device_list(ctx, &devs); //get the list of devices
if(cnt < 0) {
cout<<"Get Device Error"<<endl; //there was an error
return 1;
}
cout<<cnt<<" Devices in list."<<endl;
for (size_t idx = 0; idx < cnt; ++idx) {
libusb_device *device = devs[idx];
libusb_device_descriptor desc = {0};
int rc = libusb_get_device_descriptor(device, &desc);
assert(rc == 0);
printf("Vendor:Device = %04x:%04x\n", desc.idVendor, desc.idProduct);
}
printf("Opening Device = %04x:%04x\n", VENDOR_ID, PRODUCT_ID);
dev_handle = libusb_open_device_with_vid_pid(ctx, VENDOR_ID, PRODUCT_ID); //these are vendorID and productID I found for my usb device
if(dev_handle == NULL)
cout<<"Cannot open device"<<endl;
else
cout<<"Device Opened"<<endl;
libusb_free_device_list(devs, 1); //free the list, unref the devices in it
unsigned char *data = new unsigned char[1]; //data to write
data[0]=0b00000000;
int actual; //used to find out how many bytes were written
if(libusb_kernel_driver_active(dev_handle, 0) == 1) { //find out if kernel driver is attached
cout<<"Kernel Driver Active"<<endl;
if(libusb_detach_kernel_driver(dev_handle, 0) == 0) //detach it
cout<<"Kernel Driver Detached!"<<endl;
}
r = libusb_claim_interface(dev_handle, 0); //claim interface 0 (the first) of device (mine had jsut 1)
if(r < 0) {
cout<<"Cannot Claim Interface"<<endl;
return 1;
}
cout<<"Claimed Interface"<<endl;
cout<<"Data->"<<data<<"<-"<<endl; //just to see the data we want to write : abcd
cout<<"Writing Data..."<<endl;
r = libusb_bulk_transfer(dev_handle, (0x0A | LIBUSB_ENDPOINT_OUT), data, 1, &actual, 0); //my device's out endpoint was 2, found with trial- the device had 2 endpoints: 2 and 129
if(r == 0 && actual == 1) //we wrote the 1 bytes successfully
cout<<"Writing Successful!"<<endl;
else
cout<<"Write Error"<<endl;
r = libusb_release_interface(dev_handle, 0); //release the claimed interface
if(r!=0) {
cout<<"Cannot Release Interface"<<endl;
return 1;
}
cout<<"Released Interface"<<endl;
libusb_close(dev_handle); //close the device we opened
libusb_exit(ctx); //needs to be called to end the
delete[] data; //delete the allocated memory for data
return 0;
}
int libusb_detach_kernel_driver ( libusb_device_handle * dev,
int interface_number
)
...
If successful, you will then be able to claim the interface and perform I/O.
...
int libusb_kernel_driver_active ( libusb_device_handle * dev,
int interface_number
)
...
If a kernel driver is active, you cannot claim the interface, and libusb will be unable to perform I/O.
...
Due to what is written above, the short answer to the question "How to do I/O without detaching driver" is "You can't".
Why write fails? This is another matter. I'd suggest looking into a number of things:
Also, I can suggest another way of approaching the solution, namely sysfs.
I assume that your device(am I right?) supports EEPROM and SMBus access. It means that this support should be manifested in the kernel somewhere around /sys/bus/i2c/devices/[some_device_id]/eeprom (probably another device number, another directory position, etc, because it is all driver-related), but if it can be found and read just as any other file (which is likely, unless something is wrong with the device), then it probably should be able to write into it as well. If the read works, then I suggest to compare the hexdump -C of the found file to the datasheet, and if the data seems legit, try writing directly into your register(file offset).
Anyway, accessing character device files and sysfs files is a general way of accessing drivers' data in linux. Probably you don't even need to use libusb's API to write that single byte.